ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfi Unicode version

Theorem cncfi 14068
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfi  |-  ( ( F  e.  ( A
-cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
Distinct variable groups:    z, w, A   
w, C, z    w, F, z    w, R, z   
w, B, z

Proof of Theorem cncfi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 14065 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
2 cncfrss2 14066 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
3 elcncf2 14064 . . . . . 6  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
41, 2, 3syl2anc 411 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  ( F  e.  ( A -cn-> B )  <-> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
54ibi 176 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
65simprd 114 . . 3  |-  ( F  e.  ( A -cn-> B )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) )
7 oveq2 5883 . . . . . . . 8  |-  ( x  =  C  ->  (
w  -  x )  =  ( w  -  C ) )
87fveq2d 5520 . . . . . . 7  |-  ( x  =  C  ->  ( abs `  ( w  -  x ) )  =  ( abs `  (
w  -  C ) ) )
98breq1d 4014 . . . . . 6  |-  ( x  =  C  ->  (
( abs `  (
w  -  x ) )  <  z  <->  ( abs `  ( w  -  C
) )  <  z
) )
10 fveq2 5516 . . . . . . . . 9  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
1110oveq2d 5891 . . . . . . . 8  |-  ( x  =  C  ->  (
( F `  w
)  -  ( F `
 x ) )  =  ( ( F `
 w )  -  ( F `  C ) ) )
1211fveq2d 5520 . . . . . . 7  |-  ( x  =  C  ->  ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  C ) ) ) )
1312breq1d 4014 . . . . . 6  |-  ( x  =  C  ->  (
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  y
) )
149, 13imbi12d 234 . . . . 5  |-  ( x  =  C  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y )  <-> 
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y ) ) )
1514rexralbidv 2503 . . . 4  |-  ( x  =  C  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y ) ) )
16 breq2 4008 . . . . . 6  |-  ( y  =  R  ->  (
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  R
) )
1716imbi2d 230 . . . . 5  |-  ( y  =  R  ->  (
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y )  <-> 
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
1817rexralbidv 2503 . . . 4  |-  ( y  =  R  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
1915, 18rspc2v 2855 . . 3  |-  ( ( C  e.  A  /\  R  e.  RR+ )  -> 
( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
206, 19mpan9 281 . 2  |-  ( ( F  e.  ( A
-cn-> B )  /\  ( C  e.  A  /\  R  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
21203impb 1199 1  |-  ( ( F  e.  ( A
-cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3130   class class class wbr 4004   -->wf 5213   ` cfv 5217  (class class class)co 5875   CCcc 7809    < clt 7992    - cmin 8128   RR+crp 9653   abscabs 11006   -cn->ccncf 14060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-map 6650  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-2 8978  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-cncf 14061
This theorem is referenced by:  cncfcdm  14072  climcncf  14074  cncfco  14081  mulcncf  14094  ivthinclemlopn  14117  ivthinclemuopn  14119  eflt  14199
  Copyright terms: Public domain W3C validator