ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfi Unicode version

Theorem cncfi 14922
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfi  |-  ( ( F  e.  ( A
-cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
Distinct variable groups:    z, w, A   
w, C, z    w, F, z    w, R, z   
w, B, z

Proof of Theorem cncfi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 14919 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
2 cncfrss2 14920 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
3 elcncf2 14918 . . . . . 6  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
41, 2, 3syl2anc 411 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  ( F  e.  ( A -cn-> B )  <-> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
54ibi 176 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
65simprd 114 . . 3  |-  ( F  e.  ( A -cn-> B )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) )
7 oveq2 5933 . . . . . . . 8  |-  ( x  =  C  ->  (
w  -  x )  =  ( w  -  C ) )
87fveq2d 5565 . . . . . . 7  |-  ( x  =  C  ->  ( abs `  ( w  -  x ) )  =  ( abs `  (
w  -  C ) ) )
98breq1d 4044 . . . . . 6  |-  ( x  =  C  ->  (
( abs `  (
w  -  x ) )  <  z  <->  ( abs `  ( w  -  C
) )  <  z
) )
10 fveq2 5561 . . . . . . . . 9  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
1110oveq2d 5941 . . . . . . . 8  |-  ( x  =  C  ->  (
( F `  w
)  -  ( F `
 x ) )  =  ( ( F `
 w )  -  ( F `  C ) ) )
1211fveq2d 5565 . . . . . . 7  |-  ( x  =  C  ->  ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  C ) ) ) )
1312breq1d 4044 . . . . . 6  |-  ( x  =  C  ->  (
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  y
) )
149, 13imbi12d 234 . . . . 5  |-  ( x  =  C  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y )  <-> 
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y ) ) )
1514rexralbidv 2523 . . . 4  |-  ( x  =  C  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y ) ) )
16 breq2 4038 . . . . . 6  |-  ( y  =  R  ->  (
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  R
) )
1716imbi2d 230 . . . . 5  |-  ( y  =  R  ->  (
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y )  <-> 
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
1817rexralbidv 2523 . . . 4  |-  ( y  =  R  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
1915, 18rspc2v 2881 . . 3  |-  ( ( C  e.  A  /\  R  e.  RR+ )  -> 
( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
206, 19mpan9 281 . 2  |-  ( ( F  e.  ( A
-cn-> B )  /\  ( C  e.  A  /\  R  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
21203impb 1201 1  |-  ( ( F  e.  ( A
-cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7896    < clt 8080    - cmin 8216   RR+crp 9747   abscabs 11181   -cn->ccncf 14914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-2 9068  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-cncf 14915
This theorem is referenced by:  cncfcdm  14926  climcncf  14928  cncfco  14935  mulcncf  14952  ivthinclemlopn  14980  ivthinclemuopn  14982  eflt  15119
  Copyright terms: Public domain W3C validator