ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfi Unicode version

Theorem cncfi 15050
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfi  |-  ( ( F  e.  ( A
-cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
Distinct variable groups:    z, w, A   
w, C, z    w, F, z    w, R, z   
w, B, z

Proof of Theorem cncfi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 15047 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
2 cncfrss2 15048 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
3 elcncf2 15046 . . . . . 6  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
41, 2, 3syl2anc 411 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  ( F  e.  ( A -cn-> B )  <-> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
54ibi 176 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
65simprd 114 . . 3  |-  ( F  e.  ( A -cn-> B )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) )
7 oveq2 5952 . . . . . . . 8  |-  ( x  =  C  ->  (
w  -  x )  =  ( w  -  C ) )
87fveq2d 5580 . . . . . . 7  |-  ( x  =  C  ->  ( abs `  ( w  -  x ) )  =  ( abs `  (
w  -  C ) ) )
98breq1d 4054 . . . . . 6  |-  ( x  =  C  ->  (
( abs `  (
w  -  x ) )  <  z  <->  ( abs `  ( w  -  C
) )  <  z
) )
10 fveq2 5576 . . . . . . . . 9  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
1110oveq2d 5960 . . . . . . . 8  |-  ( x  =  C  ->  (
( F `  w
)  -  ( F `
 x ) )  =  ( ( F `
 w )  -  ( F `  C ) ) )
1211fveq2d 5580 . . . . . . 7  |-  ( x  =  C  ->  ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  C ) ) ) )
1312breq1d 4054 . . . . . 6  |-  ( x  =  C  ->  (
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  y
) )
149, 13imbi12d 234 . . . . 5  |-  ( x  =  C  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y )  <-> 
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y ) ) )
1514rexralbidv 2532 . . . 4  |-  ( x  =  C  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y ) ) )
16 breq2 4048 . . . . . 6  |-  ( y  =  R  ->  (
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  R
) )
1716imbi2d 230 . . . . 5  |-  ( y  =  R  ->  (
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y )  <-> 
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
1817rexralbidv 2532 . . . 4  |-  ( y  =  R  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
1915, 18rspc2v 2890 . . 3  |-  ( ( C  e.  A  /\  R  e.  RR+ )  -> 
( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
206, 19mpan9 281 . 2  |-  ( ( F  e.  ( A
-cn-> B )  /\  ( C  e.  A  /\  R  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
21203impb 1202 1  |-  ( ( F  e.  ( A
-cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   class class class wbr 4044   -->wf 5267   ` cfv 5271  (class class class)co 5944   CCcc 7923    < clt 8107    - cmin 8243   RR+crp 9775   abscabs 11308   -cn->ccncf 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-2 9095  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-cncf 15043
This theorem is referenced by:  cncfcdm  15054  climcncf  15056  cncfco  15063  mulcncf  15080  ivthinclemlopn  15108  ivthinclemuopn  15110  eflt  15247
  Copyright terms: Public domain W3C validator