ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem GIF version

Theorem cnvf1olem 6370
Description: Lemma for cnvf1o 6371. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 531 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = {𝐵})
2 1st2nd 6327 . . . . . . . 8 ((Rel 𝐴𝐵𝐴) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
32adantrr 479 . . . . . . 7 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
43sneqd 3679 . . . . . 6 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
54cnveqd 4898 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
65unieqd 3899 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
7 1stexg 6313 . . . . . 6 (𝐵𝐴 → (1st𝐵) ∈ V)
8 2ndexg 6314 . . . . . 6 (𝐵𝐴 → (2nd𝐵) ∈ V)
9 opswapg 5215 . . . . . 6 (((1st𝐵) ∈ V ∧ (2nd𝐵) ∈ V) → {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
107, 8, 9syl2anc 411 . . . . 5 (𝐵𝐴 {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
1110ad2antrl 490 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
121, 6, 113eqtrd 2266 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = ⟨(2nd𝐵), (1st𝐵)⟩)
13 simprl 529 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵𝐴)
143, 13eqeltrrd 2307 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴)
15 opelcnvg 4902 . . . . . 6 (((2nd𝐵) ∈ V ∧ (1st𝐵) ∈ V) → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
168, 7, 15syl2anc 411 . . . . 5 (𝐵𝐴 → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
1716ad2antrl 490 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
1814, 17mpbird 167 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴)
1912, 18eqeltrd 2306 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶𝐴)
20 opswapg 5215 . . . . . 6 (((2nd𝐵) ∈ V ∧ (1st𝐵) ∈ V) → {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩)
218, 7, 20syl2anc 411 . . . . 5 (𝐵𝐴 {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩)
2221eqcomd 2235 . . . 4 (𝐵𝐴 → ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩})
2322ad2antrl 490 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩})
2412sneqd 3679 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2524cnveqd 4898 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2625unieqd 3899 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2723, 3, 263eqtr4d 2272 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = {𝐶})
2819, 27jca 306 1 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cop 3669   cuni 3888  ccnv 4718  Rel wrel 4724  cfv 5318  1st c1st 6284  2nd c2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6286  df-2nd 6287
This theorem is referenced by:  cnvf1o  6371
  Copyright terms: Public domain W3C validator