ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem GIF version

Theorem cnvf1olem 6250
Description: Lemma for cnvf1o 6251. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 531 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = {𝐵})
2 1st2nd 6207 . . . . . . . 8 ((Rel 𝐴𝐵𝐴) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
32adantrr 479 . . . . . . 7 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
43sneqd 3620 . . . . . 6 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
54cnveqd 4821 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
65unieqd 3835 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
7 1stexg 6193 . . . . . 6 (𝐵𝐴 → (1st𝐵) ∈ V)
8 2ndexg 6194 . . . . . 6 (𝐵𝐴 → (2nd𝐵) ∈ V)
9 opswapg 5133 . . . . . 6 (((1st𝐵) ∈ V ∧ (2nd𝐵) ∈ V) → {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
107, 8, 9syl2anc 411 . . . . 5 (𝐵𝐴 {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
1110ad2antrl 490 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
121, 6, 113eqtrd 2226 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = ⟨(2nd𝐵), (1st𝐵)⟩)
13 simprl 529 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵𝐴)
143, 13eqeltrrd 2267 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴)
15 opelcnvg 4825 . . . . . 6 (((2nd𝐵) ∈ V ∧ (1st𝐵) ∈ V) → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
168, 7, 15syl2anc 411 . . . . 5 (𝐵𝐴 → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
1716ad2antrl 490 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
1814, 17mpbird 167 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴)
1912, 18eqeltrd 2266 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶𝐴)
20 opswapg 5133 . . . . . 6 (((2nd𝐵) ∈ V ∧ (1st𝐵) ∈ V) → {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩)
218, 7, 20syl2anc 411 . . . . 5 (𝐵𝐴 {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩)
2221eqcomd 2195 . . . 4 (𝐵𝐴 → ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩})
2322ad2antrl 490 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩})
2412sneqd 3620 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2524cnveqd 4821 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2625unieqd 3835 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2723, 3, 263eqtr4d 2232 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = {𝐶})
2819, 27jca 306 1 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  Vcvv 2752  {csn 3607  cop 3610   cuni 3824  ccnv 4643  Rel wrel 4649  cfv 5235  1st c1st 6164  2nd c2nd 6165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fo 5241  df-fv 5243  df-1st 6166  df-2nd 6167
This theorem is referenced by:  cnvf1o  6251
  Copyright terms: Public domain W3C validator