ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem GIF version

Theorem cnvf1olem 6333
Description: Lemma for cnvf1o 6334. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 531 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = {𝐵})
2 1st2nd 6290 . . . . . . . 8 ((Rel 𝐴𝐵𝐴) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
32adantrr 479 . . . . . . 7 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
43sneqd 3656 . . . . . 6 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
54cnveqd 4872 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
65unieqd 3875 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
7 1stexg 6276 . . . . . 6 (𝐵𝐴 → (1st𝐵) ∈ V)
8 2ndexg 6277 . . . . . 6 (𝐵𝐴 → (2nd𝐵) ∈ V)
9 opswapg 5188 . . . . . 6 (((1st𝐵) ∈ V ∧ (2nd𝐵) ∈ V) → {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
107, 8, 9syl2anc 411 . . . . 5 (𝐵𝐴 {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
1110ad2antrl 490 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
121, 6, 113eqtrd 2244 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = ⟨(2nd𝐵), (1st𝐵)⟩)
13 simprl 529 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵𝐴)
143, 13eqeltrrd 2285 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴)
15 opelcnvg 4876 . . . . . 6 (((2nd𝐵) ∈ V ∧ (1st𝐵) ∈ V) → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
168, 7, 15syl2anc 411 . . . . 5 (𝐵𝐴 → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
1716ad2antrl 490 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
1814, 17mpbird 167 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴)
1912, 18eqeltrd 2284 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶𝐴)
20 opswapg 5188 . . . . . 6 (((2nd𝐵) ∈ V ∧ (1st𝐵) ∈ V) → {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩)
218, 7, 20syl2anc 411 . . . . 5 (𝐵𝐴 {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩)
2221eqcomd 2213 . . . 4 (𝐵𝐴 → ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩})
2322ad2antrl 490 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩})
2412sneqd 3656 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2524cnveqd 4872 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2625unieqd 3875 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2723, 3, 263eqtr4d 2250 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = {𝐶})
2819, 27jca 306 1 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  Vcvv 2776  {csn 3643  cop 3646   cuni 3864  ccnv 4692  Rel wrel 4698  cfv 5290  1st c1st 6247  2nd c2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-1st 6249  df-2nd 6250
This theorem is referenced by:  cnvf1o  6334
  Copyright terms: Public domain W3C validator