ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvf1olem GIF version

Theorem cnvf1olem 6277
Description: Lemma for cnvf1o 6278. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 531 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = {𝐵})
2 1st2nd 6234 . . . . . . . 8 ((Rel 𝐴𝐵𝐴) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
32adantrr 479 . . . . . . 7 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
43sneqd 3631 . . . . . 6 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
54cnveqd 4838 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
65unieqd 3846 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
7 1stexg 6220 . . . . . 6 (𝐵𝐴 → (1st𝐵) ∈ V)
8 2ndexg 6221 . . . . . 6 (𝐵𝐴 → (2nd𝐵) ∈ V)
9 opswapg 5152 . . . . . 6 (((1st𝐵) ∈ V ∧ (2nd𝐵) ∈ V) → {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
107, 8, 9syl2anc 411 . . . . 5 (𝐵𝐴 {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
1110ad2antrl 490 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩)
121, 6, 113eqtrd 2230 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = ⟨(2nd𝐵), (1st𝐵)⟩)
13 simprl 529 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵𝐴)
143, 13eqeltrrd 2271 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴)
15 opelcnvg 4842 . . . . . 6 (((2nd𝐵) ∈ V ∧ (1st𝐵) ∈ V) → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
168, 7, 15syl2anc 411 . . . . 5 (𝐵𝐴 → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
1716ad2antrl 490 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴))
1814, 17mpbird 167 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴)
1912, 18eqeltrd 2270 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶𝐴)
20 opswapg 5152 . . . . . 6 (((2nd𝐵) ∈ V ∧ (1st𝐵) ∈ V) → {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩)
218, 7, 20syl2anc 411 . . . . 5 (𝐵𝐴 {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩)
2221eqcomd 2199 . . . 4 (𝐵𝐴 → ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩})
2322ad2antrl 490 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩})
2412sneqd 3631 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2524cnveqd 4838 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2625unieqd 3846 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2723, 3, 263eqtr4d 2236 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = {𝐶})
2819, 27jca 306 1 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  cop 3621   cuni 3835  ccnv 4658  Rel wrel 4664  cfv 5254  1st c1st 6191  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by:  cnvf1o  6278
  Copyright terms: Public domain W3C validator