Proof of Theorem cnvf1olem
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simprr 531 | 
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐶 = ∪ ◡{𝐵}) | 
| 2 |   | 1st2nd 6239 | 
. . . . . . . 8
⊢ ((Rel
𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | 
| 3 | 2 | adantrr 479 | 
. . . . . . 7
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | 
| 4 | 3 | sneqd 3635 | 
. . . . . 6
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → {𝐵} = {〈(1st ‘𝐵), (2nd ‘𝐵)〉}) | 
| 5 | 4 | cnveqd 4842 | 
. . . . 5
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ◡{𝐵} = ◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉}) | 
| 6 | 5 | unieqd 3850 | 
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ∪
◡{𝐵} = ∪ ◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉}) | 
| 7 |   | 1stexg 6225 | 
. . . . . 6
⊢ (𝐵 ∈ 𝐴 → (1st ‘𝐵) ∈ V) | 
| 8 |   | 2ndexg 6226 | 
. . . . . 6
⊢ (𝐵 ∈ 𝐴 → (2nd ‘𝐵) ∈ V) | 
| 9 |   | opswapg 5156 | 
. . . . . 6
⊢
(((1st ‘𝐵) ∈ V ∧ (2nd
‘𝐵) ∈ V) →
∪ ◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉} = 〈(2nd
‘𝐵), (1st
‘𝐵)〉) | 
| 10 | 7, 8, 9 | syl2anc 411 | 
. . . . 5
⊢ (𝐵 ∈ 𝐴 → ∪ ◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉} = 〈(2nd
‘𝐵), (1st
‘𝐵)〉) | 
| 11 | 10 | ad2antrl 490 | 
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ∪
◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉} = 〈(2nd
‘𝐵), (1st
‘𝐵)〉) | 
| 12 | 1, 6, 11 | 3eqtrd 2233 | 
. . 3
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐶 = 〈(2nd ‘𝐵), (1st ‘𝐵)〉) | 
| 13 |   | simprl 529 | 
. . . . 5
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐵 ∈ 𝐴) | 
| 14 | 3, 13 | eqeltrrd 2274 | 
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 〈(1st
‘𝐵), (2nd
‘𝐵)〉 ∈
𝐴) | 
| 15 |   | opelcnvg 4846 | 
. . . . . 6
⊢
(((2nd ‘𝐵) ∈ V ∧ (1st
‘𝐵) ∈ V) →
(〈(2nd ‘𝐵), (1st ‘𝐵)〉 ∈ ◡𝐴 ↔ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ 𝐴)) | 
| 16 | 8, 7, 15 | syl2anc 411 | 
. . . . 5
⊢ (𝐵 ∈ 𝐴 → (〈(2nd ‘𝐵), (1st ‘𝐵)〉 ∈ ◡𝐴 ↔ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ 𝐴)) | 
| 17 | 16 | ad2antrl 490 | 
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → (〈(2nd
‘𝐵), (1st
‘𝐵)〉 ∈
◡𝐴 ↔ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ 𝐴)) | 
| 18 | 14, 17 | mpbird 167 | 
. . 3
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 〈(2nd
‘𝐵), (1st
‘𝐵)〉 ∈
◡𝐴) | 
| 19 | 12, 18 | eqeltrd 2273 | 
. 2
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐶 ∈ ◡𝐴) | 
| 20 |   | opswapg 5156 | 
. . . . . 6
⊢
(((2nd ‘𝐵) ∈ V ∧ (1st
‘𝐵) ∈ V) →
∪ ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉} = 〈(1st
‘𝐵), (2nd
‘𝐵)〉) | 
| 21 | 8, 7, 20 | syl2anc 411 | 
. . . . 5
⊢ (𝐵 ∈ 𝐴 → ∪ ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉} = 〈(1st
‘𝐵), (2nd
‘𝐵)〉) | 
| 22 | 21 | eqcomd 2202 | 
. . . 4
⊢ (𝐵 ∈ 𝐴 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 = ∪ ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉}) | 
| 23 | 22 | ad2antrl 490 | 
. . 3
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 〈(1st
‘𝐵), (2nd
‘𝐵)〉 = ∪ ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉}) | 
| 24 | 12 | sneqd 3635 | 
. . . . 5
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → {𝐶} = {〈(2nd ‘𝐵), (1st ‘𝐵)〉}) | 
| 25 | 24 | cnveqd 4842 | 
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ◡{𝐶} = ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉}) | 
| 26 | 25 | unieqd 3850 | 
. . 3
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ∪
◡{𝐶} = ∪ ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉}) | 
| 27 | 23, 3, 26 | 3eqtr4d 2239 | 
. 2
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐵 = ∪ ◡{𝐶}) | 
| 28 | 19, 27 | jca 306 | 
1
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → (𝐶 ∈ ◡𝐴 ∧ 𝐵 = ∪ ◡{𝐶})) |