ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocan2 GIF version

Theorem cocan2 5832
Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))

Proof of Theorem cocan2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 5477 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
213ad2ant1 1020 . . . . . 6 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐹:𝐴𝐵)
3 fvco3 5629 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
42, 3sylan 283 . . . . 5 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
5 fvco3 5629 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐾𝐹)‘𝑦) = (𝐾‘(𝐹𝑦)))
62, 5sylan 283 . . . . 5 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → ((𝐾𝐹)‘𝑦) = (𝐾‘(𝐹𝑦)))
74, 6eqeq12d 2208 . . . 4 (((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) ∧ 𝑦𝐴) → (((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦))))
87ralbidva 2490 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ ∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦))))
9 fveq2 5555 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐻‘(𝐹𝑦)) = (𝐻𝑥))
10 fveq2 5555 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐾‘(𝐹𝑦)) = (𝐾𝑥))
119, 10eqeq12d 2208 . . . . 5 ((𝐹𝑦) = 𝑥 → ((𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ (𝐻𝑥) = (𝐾𝑥)))
1211cbvfo 5829 . . . 4 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
13123ad2ant1 1020 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 (𝐻‘(𝐹𝑦)) = (𝐾‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
148, 13bitrd 188 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦) ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
15 simp2 1000 . . . 4 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐻 Fn 𝐵)
16 fnfco 5429 . . . 4 ((𝐻 Fn 𝐵𝐹:𝐴𝐵) → (𝐻𝐹) Fn 𝐴)
1715, 2, 16syl2anc 411 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻𝐹) Fn 𝐴)
18 simp3 1001 . . . 4 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → 𝐾 Fn 𝐵)
19 fnfco 5429 . . . 4 ((𝐾 Fn 𝐵𝐹:𝐴𝐵) → (𝐾𝐹) Fn 𝐴)
2018, 2, 19syl2anc 411 . . 3 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐾𝐹) Fn 𝐴)
21 eqfnfv 5656 . . 3 (((𝐻𝐹) Fn 𝐴 ∧ (𝐾𝐹) Fn 𝐴) → ((𝐻𝐹) = (𝐾𝐹) ↔ ∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦)))
2217, 20, 21syl2anc 411 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ ∀𝑦𝐴 ((𝐻𝐹)‘𝑦) = ((𝐾𝐹)‘𝑦)))
23 eqfnfv 5656 . . 3 ((𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
2415, 18, 23syl2anc 411 . 2 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐵 (𝐻𝑥) = (𝐾𝑥)))
2514, 22, 243bitr4d 220 1 ((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  ccom 4664   Fn wfn 5250  wf 5251  ontowfo 5253  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263
This theorem is referenced by:  mapen  6904  hashfacen  10910
  Copyright terms: Public domain W3C validator