ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctfoex Unicode version

Theorem ctfoex 7177
Description: A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
Assertion
Ref Expression
ctfoex  |-  ( E. f  f : om -onto->
( A 1o )  ->  A  e.  _V )
Distinct variable group:    A, f

Proof of Theorem ctfoex
StepHypRef Expression
1 omex 4625 . . . . 5  |-  om  e.  _V
2 focdmex 6167 . . . . 5  |-  ( om  e.  _V  ->  (
f : om -onto-> ( A 1o )  ->  ( A 1o )  e.  _V ) )
31, 2ax-mp 5 . . . 4  |-  ( f : om -onto-> ( A 1o )  ->  ( A 1o )  e.  _V )
4 djuexb 7103 . . . 4  |-  ( ( A  e.  _V  /\  1o  e.  _V )  <->  ( A 1o )  e.  _V )
53, 4sylibr 134 . . 3  |-  ( f : om -onto-> ( A 1o )  ->  ( A  e.  _V  /\  1o  e.  _V ) )
65simpld 112 . 2  |-  ( f : om -onto-> ( A 1o )  ->  A  e. 
_V )
76exlimiv 1609 1  |-  ( E. f  f : om -onto->
( A 1o )  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1503    e. wcel 2164   _Vcvv 2760   omcom 4622   -onto->wfo 5252   1oc1o 6462   ⊔ cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-dju 7097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator