ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omct Unicode version

Theorem omct 7094
Description:  om is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
omct  |-  E. f 
f : om -onto-> ( om 1o )

Proof of Theorem omct
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 f1oi 5480 . . 3  |-  (  _I  |`  om ) : om -1-1-onto-> om
2 f1ofo 5449 . . 3  |-  ( (  _I  |`  om ) : om -1-1-onto-> om  ->  (  _I  |` 
om ) : om -onto-> om )
3 omex 4577 . . . . 5  |-  om  e.  _V
4 resiexg 4936 . . . . 5  |-  ( om  e.  _V  ->  (  _I  |`  om )  e. 
_V )
53, 4ax-mp 5 . . . 4  |-  (  _I  |`  om )  e.  _V
6 foeq1 5416 . . . 4  |-  ( f  =  (  _I  |`  om )  ->  ( f : om -onto-> om 
<->  (  _I  |`  om ) : om -onto-> om ) )
75, 6spcev 2825 . . 3  |-  ( (  _I  |`  om ) : om -onto-> om  ->  E. f 
f : om -onto-> om )
81, 2, 7mp2b 8 . 2  |-  E. f 
f : om -onto-> om
9 peano1 4578 . . 3  |-  (/)  e.  om
10 elex2 2746 . . 3  |-  ( (/)  e.  om  ->  E. x  x  e.  om )
11 ctm 7086 . . 3  |-  ( E. x  x  e.  om  ->  ( E. f  f : om -onto-> ( om 1o )  <->  E. f  f : om -onto-> om ) )
129, 10, 11mp2b 8 . 2  |-  ( E. f  f : om -onto->
( om 1o )  <->  E. f 
f : om -onto-> om )
138, 12mpbir 145 1  |-  E. f 
f : om -onto-> ( om 1o )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1485    e. wcel 2141   _Vcvv 2730   (/)c0 3414    _I cid 4273   omcom 4574    |` cres 4613   -onto->wfo 5196   -1-1-onto->wf1o 5197   1oc1o 6388   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  omiunct  12399
  Copyright terms: Public domain W3C validator