ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omct Unicode version

Theorem omct 7118
Description:  om is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
Assertion
Ref Expression
omct  |-  E. f 
f : om -onto-> ( om 1o )

Proof of Theorem omct
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 f1oi 5501 . . 3  |-  (  _I  |`  om ) : om -1-1-onto-> om
2 f1ofo 5470 . . 3  |-  ( (  _I  |`  om ) : om -1-1-onto-> om  ->  (  _I  |` 
om ) : om -onto-> om )
3 omex 4594 . . . . 5  |-  om  e.  _V
4 resiexg 4954 . . . . 5  |-  ( om  e.  _V  ->  (  _I  |`  om )  e. 
_V )
53, 4ax-mp 5 . . . 4  |-  (  _I  |`  om )  e.  _V
6 foeq1 5436 . . . 4  |-  ( f  =  (  _I  |`  om )  ->  ( f : om -onto-> om 
<->  (  _I  |`  om ) : om -onto-> om ) )
75, 6spcev 2834 . . 3  |-  ( (  _I  |`  om ) : om -onto-> om  ->  E. f 
f : om -onto-> om )
81, 2, 7mp2b 8 . 2  |-  E. f 
f : om -onto-> om
9 peano1 4595 . . 3  |-  (/)  e.  om
10 elex2 2755 . . 3  |-  ( (/)  e.  om  ->  E. x  x  e.  om )
11 ctm 7110 . . 3  |-  ( E. x  x  e.  om  ->  ( E. f  f : om -onto-> ( om 1o )  <->  E. f  f : om -onto-> om ) )
129, 10, 11mp2b 8 . 2  |-  ( E. f  f : om -onto->
( om 1o )  <->  E. f 
f : om -onto-> om )
138, 12mpbir 146 1  |-  E. f 
f : om -onto-> ( om 1o )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1492    e. wcel 2148   _Vcvv 2739   (/)c0 3424    _I cid 4290   omcom 4591    |` cres 4630   -onto->wfo 5216   -1-1-onto->wf1o 5217   1oc1o 6412   ⊔ cdju 7038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-dju 7039  df-inl 7048  df-inr 7049  df-case 7085
This theorem is referenced by:  omiunct  12447
  Copyright terms: Public domain W3C validator