| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcdvdsb | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| pcdvdsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9374 |
. . . . . . . . 9
| |
| 2 | 1 | 3ad2ant3 1044 |
. . . . . . . 8
|
| 3 | 2 | rexrd 8192 |
. . . . . . 7
|
| 4 | pnfge 9981 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | pc0 12822 |
. . . . . . 7
| |
| 7 | 6 | 3ad2ant1 1042 |
. . . . . 6
|
| 8 | 5, 7 | breqtrrd 4110 |
. . . . 5
|
| 9 | prmnn 12627 |
. . . . . . . . 9
| |
| 10 | nnexpcl 10769 |
. . . . . . . . 9
| |
| 11 | 9, 10 | sylan 283 |
. . . . . . . 8
|
| 12 | 11 | 3adant2 1040 |
. . . . . . 7
|
| 13 | 12 | nnzd 9564 |
. . . . . 6
|
| 14 | dvds0 12312 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 8, 15 | 2thd 175 |
. . . 4
|
| 17 | 16 | adantr 276 |
. . 3
|
| 18 | oveq2 6008 |
. . . . . 6
| |
| 19 | 18 | breq2d 4094 |
. . . . 5
|
| 20 | breq2 4086 |
. . . . 5
| |
| 21 | 19, 20 | bibi12d 235 |
. . . 4
|
| 22 | 21 | adantl 277 |
. . 3
|
| 23 | 17, 22 | mpbird 167 |
. 2
|
| 24 | simpl3 1026 |
. . . . . . 7
| |
| 25 | 24 | nn0zd 9563 |
. . . . . 6
|
| 26 | simpl1 1024 |
. . . . . . . 8
| |
| 27 | simpl2 1025 |
. . . . . . . 8
| |
| 28 | simpr 110 |
. . . . . . . 8
| |
| 29 | pczcl 12816 |
. . . . . . . 8
| |
| 30 | 26, 27, 28, 29 | syl12anc 1269 |
. . . . . . 7
|
| 31 | 30 | nn0zd 9563 |
. . . . . 6
|
| 32 | eluz 9731 |
. . . . . 6
| |
| 33 | 25, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | 26, 9 | syl 14 |
. . . . . . 7
|
| 35 | 34 | nnzd 9564 |
. . . . . 6
|
| 36 | dvdsexp 12367 |
. . . . . . 7
| |
| 37 | 36 | 3expia 1229 |
. . . . . 6
|
| 38 | 35, 24, 37 | syl2anc 411 |
. . . . 5
|
| 39 | 33, 38 | sylbird 170 |
. . . 4
|
| 40 | pczdvds 12832 |
. . . . . 6
| |
| 41 | 26, 27, 28, 40 | syl12anc 1269 |
. . . . 5
|
| 42 | 13 | adantr 276 |
. . . . . 6
|
| 43 | 34, 30 | nnexpcld 10912 |
. . . . . . 7
|
| 44 | 43 | nnzd 9564 |
. . . . . 6
|
| 45 | dvdstr 12334 |
. . . . . 6
| |
| 46 | 42, 44, 27, 45 | syl3anc 1271 |
. . . . 5
|
| 47 | 41, 46 | mpan2d 428 |
. . . 4
|
| 48 | 39, 47 | syld 45 |
. . 3
|
| 49 | zdcle 9519 |
. . . . 5
| |
| 50 | 25, 31, 49 | syl2anc 411 |
. . . 4
|
| 51 | nn0z 9462 |
. . . . . . . 8
| |
| 52 | nn0z 9462 |
. . . . . . . 8
| |
| 53 | zltnle 9488 |
. . . . . . . 8
| |
| 54 | 51, 52, 53 | syl2an 289 |
. . . . . . 7
|
| 55 | nn0ltp1le 9505 |
. . . . . . 7
| |
| 56 | 54, 55 | bitr3d 190 |
. . . . . 6
|
| 57 | 30, 24, 56 | syl2anc 411 |
. . . . 5
|
| 58 | peano2nn0 9405 |
. . . . . . . . . 10
| |
| 59 | 30, 58 | syl 14 |
. . . . . . . . 9
|
| 60 | 59 | nn0zd 9563 |
. . . . . . . 8
|
| 61 | eluz 9731 |
. . . . . . . 8
| |
| 62 | 60, 25, 61 | syl2anc 411 |
. . . . . . 7
|
| 63 | dvdsexp 12367 |
. . . . . . . . 9
| |
| 64 | 63 | 3expia 1229 |
. . . . . . . 8
|
| 65 | 35, 59, 64 | syl2anc 411 |
. . . . . . 7
|
| 66 | 62, 65 | sylbird 170 |
. . . . . 6
|
| 67 | pczndvds 12834 |
. . . . . . . . 9
| |
| 68 | 26, 27, 28, 67 | syl12anc 1269 |
. . . . . . . 8
|
| 69 | 34, 59 | nnexpcld 10912 |
. . . . . . . . . 10
|
| 70 | 69 | nnzd 9564 |
. . . . . . . . 9
|
| 71 | dvdstr 12334 |
. . . . . . . . 9
| |
| 72 | 70, 42, 27, 71 | syl3anc 1271 |
. . . . . . . 8
|
| 73 | 68, 72 | mtod 667 |
. . . . . . 7
|
| 74 | imnan 694 |
. . . . . . 7
| |
| 75 | 73, 74 | sylibr 134 |
. . . . . 6
|
| 76 | 66, 75 | syld 45 |
. . . . 5
|
| 77 | 57, 76 | sylbid 150 |
. . . 4
|
| 78 | condc 858 |
. . . 4
| |
| 79 | 50, 77, 78 | sylc 62 |
. . 3
|
| 80 | 48, 79 | impbid 129 |
. 2
|
| 81 | simp2 1022 |
. . . 4
| |
| 82 | 0zd 9454 |
. . . 4
| |
| 83 | zdceq 9518 |
. . . 4
| |
| 84 | 81, 82, 83 | syl2anc 411 |
. . 3
|
| 85 | dcne 2411 |
. . 3
| |
| 86 | 84, 85 | sylib 122 |
. 2
|
| 87 | 23, 80, 86 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 df-gcd 12470 df-prm 12625 df-pc 12803 |
| This theorem is referenced by: pcelnn 12839 pcidlem 12841 pcdvdstr 12845 pcgcd1 12846 pcfac 12868 pockthlem 12874 pockthg 12875 |
| Copyright terms: Public domain | W3C validator |