ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdvdsb Unicode version

Theorem pcdvdsb 12273
Description:  P ^ A divides  N if and only if  A is at most the count of  P. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )

Proof of Theorem pcdvdsb
StepHypRef Expression
1 nn0re 9144 . . . . . . . . 9  |-  ( A  e.  NN0  ->  A  e.  RR )
213ad2ant3 1015 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  e.  RR )
32rexrd 7969 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  e.  RR* )
4 pnfge 9746 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_ +oo )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  <_ +oo )
6 pc0 12258 . . . . . . 7  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
763ad2ant1 1013 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P  pCnt  0 )  = +oo )
85, 7breqtrrd 4017 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  <_  ( P  pCnt  0
) )
9 prmnn 12064 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
10 nnexpcl 10489 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  A  e.  NN0 )  -> 
( P ^ A
)  e.  NN )
119, 10sylan 281 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ A )  e.  NN )
12113adant2 1011 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  e.  NN )
1312nnzd 9333 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  e.  ZZ )
14 dvds0 11768 . . . . . 6  |-  ( ( P ^ A )  e.  ZZ  ->  ( P ^ A )  ||  0 )
1513, 14syl 14 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  ||  0 )
168, 152thd 174 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  0 )  <->  ( P ^ A )  ||  0
) )
1716adantr 274 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) )
18 oveq2 5861 . . . . . 6  |-  ( N  =  0  ->  ( P  pCnt  N )  =  ( P  pCnt  0
) )
1918breq2d 4001 . . . . 5  |-  ( N  =  0  ->  ( A  <_  ( P  pCnt  N )  <->  A  <_  ( P 
pCnt  0 ) ) )
20 breq2 3993 . . . . 5  |-  ( N  =  0  ->  (
( P ^ A
)  ||  N  <->  ( P ^ A )  ||  0
) )
2119, 20bibi12d 234 . . . 4  |-  ( N  =  0  ->  (
( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
)  <->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) ) )
2221adantl 275 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
)  <->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) ) )
2317, 22mpbird 166 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( A  <_ 
( P  pCnt  N
)  <->  ( P ^ A )  ||  N
) )
24 simpl3 997 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  A  e.  NN0 )
2524nn0zd 9332 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  A  e.  ZZ )
26 simpl1 995 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  Prime )
27 simpl2 996 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  N  e.  ZZ )
28 simpr 109 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  N  =/=  0 )
29 pczcl 12252 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  NN0 )
3026, 27, 28, 29syl12anc 1231 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P  pCnt  N
)  e.  NN0 )
3130nn0zd 9332 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P  pCnt  N
)  e.  ZZ )
32 eluz 9500 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( P  pCnt  N )  e.  ZZ )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  <->  A  <_  ( P  pCnt  N )
) )
3325, 31, 32syl2anc 409 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  <->  A  <_  ( P  pCnt  N )
) )
3426, 9syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  NN )
3534nnzd 9333 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  ZZ )
36 dvdsexp 11821 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  NN0  /\  ( P  pCnt  N )  e.  ( ZZ>= `  A )
)  ->  ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) ) )
37363expia 1200 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  ->  ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) ) ) )
3835, 24, 37syl2anc 409 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  ->  ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) ) ) )
3933, 38sylbird 169 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  -> 
( P ^ A
)  ||  ( P ^ ( P  pCnt  N ) ) ) )
40 pczdvds 12267 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( P  pCnt  N ) ) 
||  N )
4126, 27, 28, 40syl12anc 1231 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) ) 
||  N )
4213adantr 274 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ A
)  e.  ZZ )
4334, 30nnexpcld 10631 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) )  e.  NN )
4443nnzd 9333 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) )  e.  ZZ )
45 dvdstr 11790 . . . . . 6  |-  ( ( ( P ^ A
)  e.  ZZ  /\  ( P ^ ( P 
pCnt  N ) )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) )  /\  ( P ^ ( P  pCnt  N ) )  ||  N
)  ->  ( P ^ A )  ||  N
) )
4642, 44, 27, 45syl3anc 1233 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) )  /\  ( P ^ ( P 
pCnt  N ) )  ||  N )  ->  ( P ^ A )  ||  N ) )
4741, 46mpan2d 426 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) )  ->  ( P ^ A )  ||  N ) )
4839, 47syld 45 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  -> 
( P ^ A
)  ||  N )
)
49 zdcle 9288 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( P  pCnt  N )  e.  ZZ )  -> DECID  A  <_  ( P  pCnt  N
) )
5025, 31, 49syl2anc 409 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> DECID  A  <_  ( P  pCnt  N
) )
51 nn0z 9232 . . . . . . . 8  |-  ( ( P  pCnt  N )  e.  NN0  ->  ( P  pCnt  N )  e.  ZZ )
52 nn0z 9232 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
53 zltnle 9258 . . . . . . . 8  |-  ( ( ( P  pCnt  N
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( P  pCnt  N )  <  A  <->  -.  A  <_  ( P  pCnt  N
) ) )
5451, 52, 53syl2an 287 . . . . . . 7  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  <  A  <->  -.  A  <_  ( P  pCnt  N
) ) )
55 nn0ltp1le 9274 . . . . . . 7  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  <  A  <->  ( ( P  pCnt  N )  +  1 )  <_  A
) )
5654, 55bitr3d 189 . . . . . 6  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
5730, 24, 56syl2anc 409 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
58 peano2nn0 9175 . . . . . . . . . 10  |-  ( ( P  pCnt  N )  e.  NN0  ->  ( ( P  pCnt  N )  +  1 )  e.  NN0 )
5930, 58syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  +  1 )  e.  NN0 )
6059nn0zd 9332 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  +  1 )  e.  ZZ )
61 eluz 9500 . . . . . . . 8  |-  ( ( ( ( P  pCnt  N )  +  1 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  ( ZZ>= `  ( ( P  pCnt  N )  +  1 ) )  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
6260, 25, 61syl2anc 409 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  <->  ( ( P  pCnt  N )  +  1 )  <_  A
) )
63 dvdsexp 11821 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( P  pCnt  N )  +  1 )  e.  NN0  /\  A  e.  ( ZZ>= `  ( ( P  pCnt  N )  +  1 ) ) )  ->  ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A ) )
64633expia 1200 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( P  pCnt  N )  +  1 )  e.  NN0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  ->  ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A ) ) )
6535, 59, 64syl2anc 409 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  ->  ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A ) ) )
6662, 65sylbird 169 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P 
pCnt  N )  +  1 )  <_  A  ->  ( P ^ ( ( P  pCnt  N )  +  1 ) ) 
||  ( P ^ A ) ) )
67 pczndvds 12269 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N )
6826, 27, 28, 67syl12anc 1231 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  -.  ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N )
6934, 59nnexpcld 10631 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  NN )
7069nnzd 9333 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  ZZ )
71 dvdstr 11790 . . . . . . . . 9  |-  ( ( ( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  ZZ  /\  ( P ^ A )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N ) )
7270, 42, 27, 71syl3anc 1233 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N ) )
7368, 72mtod 658 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  -.  ( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N ) )
74 imnan 685 . . . . . . 7  |-  ( ( ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  ( P ^ A )  ->  -.  ( P ^ A
)  ||  N )  <->  -.  ( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N ) )
7573, 74sylibr 133 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  ->  -.  ( P ^ A
)  ||  N )
)
7666, 75syld 45 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P 
pCnt  N )  +  1 )  <_  A  ->  -.  ( P ^ A
)  ||  N )
)
7757, 76sylbid 149 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  ->  -.  ( P ^ A )  ||  N ) )
78 condc 848 . . . 4  |-  (DECID  A  <_ 
( P  pCnt  N
)  ->  ( ( -.  A  <_  ( P 
pCnt  N )  ->  -.  ( P ^ A ) 
||  N )  -> 
( ( P ^ A )  ||  N  ->  A  <_  ( P  pCnt  N ) ) ) )
7950, 77, 78sylc 62 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^ A )  ||  N  ->  A  <_  ( P  pCnt  N ) ) )
8048, 79impbid 128 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )
81 simp2 993 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  N  e.  ZZ )
82 0zd 9224 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  0  e.  ZZ )
83 zdceq 9287 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
8481, 82, 83syl2anc 409 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  -> DECID  N  =  0
)
85 dcne 2351 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
8684, 85sylib 121 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( N  =  0  \/  N  =/=  0 ) )
8723, 80, 86mpjaodan 793 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777   +oocpnf 7951   RR*cxr 7953    < clt 7954    <_ cle 7955   NNcn 8878   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ^cexp 10475    || cdvds 11749   Primecprime 12061    pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by:  pcelnn  12274  pcidlem  12276  pcdvdstr  12280  pcgcd1  12281  pcfac  12302  pockthlem  12308  pockthg  12309
  Copyright terms: Public domain W3C validator