ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdvdsb Unicode version

Theorem pcdvdsb 12266
Description:  P ^ A divides  N if and only if  A is at most the count of  P. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )

Proof of Theorem pcdvdsb
StepHypRef Expression
1 nn0re 9137 . . . . . . . . 9  |-  ( A  e.  NN0  ->  A  e.  RR )
213ad2ant3 1015 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  e.  RR )
32rexrd 7962 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  e.  RR* )
4 pnfge 9739 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_ +oo )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  <_ +oo )
6 pc0 12251 . . . . . . 7  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
763ad2ant1 1013 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P  pCnt  0 )  = +oo )
85, 7breqtrrd 4015 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  <_  ( P  pCnt  0
) )
9 prmnn 12057 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
10 nnexpcl 10482 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  A  e.  NN0 )  -> 
( P ^ A
)  e.  NN )
119, 10sylan 281 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ A )  e.  NN )
12113adant2 1011 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  e.  NN )
1312nnzd 9326 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  e.  ZZ )
14 dvds0 11761 . . . . . 6  |-  ( ( P ^ A )  e.  ZZ  ->  ( P ^ A )  ||  0 )
1513, 14syl 14 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  ||  0 )
168, 152thd 174 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  0 )  <->  ( P ^ A )  ||  0
) )
1716adantr 274 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) )
18 oveq2 5859 . . . . . 6  |-  ( N  =  0  ->  ( P  pCnt  N )  =  ( P  pCnt  0
) )
1918breq2d 3999 . . . . 5  |-  ( N  =  0  ->  ( A  <_  ( P  pCnt  N )  <->  A  <_  ( P 
pCnt  0 ) ) )
20 breq2 3991 . . . . 5  |-  ( N  =  0  ->  (
( P ^ A
)  ||  N  <->  ( P ^ A )  ||  0
) )
2119, 20bibi12d 234 . . . 4  |-  ( N  =  0  ->  (
( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
)  <->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) ) )
2221adantl 275 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
)  <->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) ) )
2317, 22mpbird 166 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( A  <_ 
( P  pCnt  N
)  <->  ( P ^ A )  ||  N
) )
24 simpl3 997 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  A  e.  NN0 )
2524nn0zd 9325 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  A  e.  ZZ )
26 simpl1 995 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  Prime )
27 simpl2 996 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  N  e.  ZZ )
28 simpr 109 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  N  =/=  0 )
29 pczcl 12245 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  NN0 )
3026, 27, 28, 29syl12anc 1231 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P  pCnt  N
)  e.  NN0 )
3130nn0zd 9325 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P  pCnt  N
)  e.  ZZ )
32 eluz 9493 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( P  pCnt  N )  e.  ZZ )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  <->  A  <_  ( P  pCnt  N )
) )
3325, 31, 32syl2anc 409 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  <->  A  <_  ( P  pCnt  N )
) )
3426, 9syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  NN )
3534nnzd 9326 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  ZZ )
36 dvdsexp 11814 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  NN0  /\  ( P  pCnt  N )  e.  ( ZZ>= `  A )
)  ->  ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) ) )
37363expia 1200 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  ->  ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) ) ) )
3835, 24, 37syl2anc 409 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  ->  ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) ) ) )
3933, 38sylbird 169 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  -> 
( P ^ A
)  ||  ( P ^ ( P  pCnt  N ) ) ) )
40 pczdvds 12260 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( P  pCnt  N ) ) 
||  N )
4126, 27, 28, 40syl12anc 1231 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) ) 
||  N )
4213adantr 274 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ A
)  e.  ZZ )
4334, 30nnexpcld 10624 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) )  e.  NN )
4443nnzd 9326 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) )  e.  ZZ )
45 dvdstr 11783 . . . . . 6  |-  ( ( ( P ^ A
)  e.  ZZ  /\  ( P ^ ( P 
pCnt  N ) )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) )  /\  ( P ^ ( P  pCnt  N ) )  ||  N
)  ->  ( P ^ A )  ||  N
) )
4642, 44, 27, 45syl3anc 1233 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) )  /\  ( P ^ ( P 
pCnt  N ) )  ||  N )  ->  ( P ^ A )  ||  N ) )
4741, 46mpan2d 426 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) )  ->  ( P ^ A )  ||  N ) )
4839, 47syld 45 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  -> 
( P ^ A
)  ||  N )
)
49 zdcle 9281 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( P  pCnt  N )  e.  ZZ )  -> DECID  A  <_  ( P  pCnt  N
) )
5025, 31, 49syl2anc 409 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> DECID  A  <_  ( P  pCnt  N
) )
51 nn0z 9225 . . . . . . . 8  |-  ( ( P  pCnt  N )  e.  NN0  ->  ( P  pCnt  N )  e.  ZZ )
52 nn0z 9225 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
53 zltnle 9251 . . . . . . . 8  |-  ( ( ( P  pCnt  N
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( P  pCnt  N )  <  A  <->  -.  A  <_  ( P  pCnt  N
) ) )
5451, 52, 53syl2an 287 . . . . . . 7  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  <  A  <->  -.  A  <_  ( P  pCnt  N
) ) )
55 nn0ltp1le 9267 . . . . . . 7  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  <  A  <->  ( ( P  pCnt  N )  +  1 )  <_  A
) )
5654, 55bitr3d 189 . . . . . 6  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
5730, 24, 56syl2anc 409 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
58 peano2nn0 9168 . . . . . . . . . 10  |-  ( ( P  pCnt  N )  e.  NN0  ->  ( ( P  pCnt  N )  +  1 )  e.  NN0 )
5930, 58syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  +  1 )  e.  NN0 )
6059nn0zd 9325 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  +  1 )  e.  ZZ )
61 eluz 9493 . . . . . . . 8  |-  ( ( ( ( P  pCnt  N )  +  1 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  ( ZZ>= `  ( ( P  pCnt  N )  +  1 ) )  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
6260, 25, 61syl2anc 409 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  <->  ( ( P  pCnt  N )  +  1 )  <_  A
) )
63 dvdsexp 11814 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( P  pCnt  N )  +  1 )  e.  NN0  /\  A  e.  ( ZZ>= `  ( ( P  pCnt  N )  +  1 ) ) )  ->  ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A ) )
64633expia 1200 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( P  pCnt  N )  +  1 )  e.  NN0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  ->  ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A ) ) )
6535, 59, 64syl2anc 409 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  ->  ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A ) ) )
6662, 65sylbird 169 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P 
pCnt  N )  +  1 )  <_  A  ->  ( P ^ ( ( P  pCnt  N )  +  1 ) ) 
||  ( P ^ A ) ) )
67 pczndvds 12262 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N )
6826, 27, 28, 67syl12anc 1231 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  -.  ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N )
6934, 59nnexpcld 10624 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  NN )
7069nnzd 9326 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  ZZ )
71 dvdstr 11783 . . . . . . . . 9  |-  ( ( ( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  ZZ  /\  ( P ^ A )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N ) )
7270, 42, 27, 71syl3anc 1233 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N ) )
7368, 72mtod 658 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  -.  ( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N ) )
74 imnan 685 . . . . . . 7  |-  ( ( ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  ( P ^ A )  ->  -.  ( P ^ A
)  ||  N )  <->  -.  ( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N ) )
7573, 74sylibr 133 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  ->  -.  ( P ^ A
)  ||  N )
)
7666, 75syld 45 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P 
pCnt  N )  +  1 )  <_  A  ->  -.  ( P ^ A
)  ||  N )
)
7757, 76sylbid 149 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  ->  -.  ( P ^ A )  ||  N ) )
78 condc 848 . . . 4  |-  (DECID  A  <_ 
( P  pCnt  N
)  ->  ( ( -.  A  <_  ( P 
pCnt  N )  ->  -.  ( P ^ A ) 
||  N )  -> 
( ( P ^ A )  ||  N  ->  A  <_  ( P  pCnt  N ) ) ) )
7950, 77, 78sylc 62 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^ A )  ||  N  ->  A  <_  ( P  pCnt  N ) ) )
8048, 79impbid 128 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )
81 simp2 993 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  N  e.  ZZ )
82 0zd 9217 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  0  e.  ZZ )
83 zdceq 9280 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
8481, 82, 83syl2anc 409 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  -> DECID  N  =  0
)
85 dcne 2351 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
8684, 85sylib 121 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( N  =  0  \/  N  =/=  0 ) )
8723, 80, 86mpjaodan 793 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3987   ` cfv 5196  (class class class)co 5851   RRcr 7766   0cc0 7767   1c1 7768    + caddc 7770   +oocpnf 7944   RR*cxr 7946    < clt 7947    <_ cle 7948   NNcn 8871   NN0cn0 9128   ZZcz 9205   ZZ>=cuz 9480   ^cexp 10468    || cdvds 11742   Primecprime 12054    pCnt cpc 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6511  df-en 6717  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-dvds 11743  df-gcd 11891  df-prm 12055  df-pc 12232
This theorem is referenced by:  pcelnn  12267  pcidlem  12269  pcdvdstr  12273  pcgcd1  12274  pcfac  12295  pockthlem  12301  pockthg  12302
  Copyright terms: Public domain W3C validator