Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcdvdsb | Unicode version |
Description: divides if and only if is at most the count of . (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
pcdvdsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 9137 | . . . . . . . . 9 | |
2 | 1 | 3ad2ant3 1015 | . . . . . . . 8 |
3 | 2 | rexrd 7962 | . . . . . . 7 |
4 | pnfge 9739 | . . . . . . 7 | |
5 | 3, 4 | syl 14 | . . . . . 6 |
6 | pc0 12251 | . . . . . . 7 | |
7 | 6 | 3ad2ant1 1013 | . . . . . 6 |
8 | 5, 7 | breqtrrd 4015 | . . . . 5 |
9 | prmnn 12057 | . . . . . . . . 9 | |
10 | nnexpcl 10482 | . . . . . . . . 9 | |
11 | 9, 10 | sylan 281 | . . . . . . . 8 |
12 | 11 | 3adant2 1011 | . . . . . . 7 |
13 | 12 | nnzd 9326 | . . . . . 6 |
14 | dvds0 11761 | . . . . . 6 | |
15 | 13, 14 | syl 14 | . . . . 5 |
16 | 8, 15 | 2thd 174 | . . . 4 |
17 | 16 | adantr 274 | . . 3 |
18 | oveq2 5859 | . . . . . 6 | |
19 | 18 | breq2d 3999 | . . . . 5 |
20 | breq2 3991 | . . . . 5 | |
21 | 19, 20 | bibi12d 234 | . . . 4 |
22 | 21 | adantl 275 | . . 3 |
23 | 17, 22 | mpbird 166 | . 2 |
24 | simpl3 997 | . . . . . . 7 | |
25 | 24 | nn0zd 9325 | . . . . . 6 |
26 | simpl1 995 | . . . . . . . 8 | |
27 | simpl2 996 | . . . . . . . 8 | |
28 | simpr 109 | . . . . . . . 8 | |
29 | pczcl 12245 | . . . . . . . 8 | |
30 | 26, 27, 28, 29 | syl12anc 1231 | . . . . . . 7 |
31 | 30 | nn0zd 9325 | . . . . . 6 |
32 | eluz 9493 | . . . . . 6 | |
33 | 25, 31, 32 | syl2anc 409 | . . . . 5 |
34 | 26, 9 | syl 14 | . . . . . . 7 |
35 | 34 | nnzd 9326 | . . . . . 6 |
36 | dvdsexp 11814 | . . . . . . 7 | |
37 | 36 | 3expia 1200 | . . . . . 6 |
38 | 35, 24, 37 | syl2anc 409 | . . . . 5 |
39 | 33, 38 | sylbird 169 | . . . 4 |
40 | pczdvds 12260 | . . . . . 6 | |
41 | 26, 27, 28, 40 | syl12anc 1231 | . . . . 5 |
42 | 13 | adantr 274 | . . . . . 6 |
43 | 34, 30 | nnexpcld 10624 | . . . . . . 7 |
44 | 43 | nnzd 9326 | . . . . . 6 |
45 | dvdstr 11783 | . . . . . 6 | |
46 | 42, 44, 27, 45 | syl3anc 1233 | . . . . 5 |
47 | 41, 46 | mpan2d 426 | . . . 4 |
48 | 39, 47 | syld 45 | . . 3 |
49 | zdcle 9281 | . . . . 5 DECID | |
50 | 25, 31, 49 | syl2anc 409 | . . . 4 DECID |
51 | nn0z 9225 | . . . . . . . 8 | |
52 | nn0z 9225 | . . . . . . . 8 | |
53 | zltnle 9251 | . . . . . . . 8 | |
54 | 51, 52, 53 | syl2an 287 | . . . . . . 7 |
55 | nn0ltp1le 9267 | . . . . . . 7 | |
56 | 54, 55 | bitr3d 189 | . . . . . 6 |
57 | 30, 24, 56 | syl2anc 409 | . . . . 5 |
58 | peano2nn0 9168 | . . . . . . . . . 10 | |
59 | 30, 58 | syl 14 | . . . . . . . . 9 |
60 | 59 | nn0zd 9325 | . . . . . . . 8 |
61 | eluz 9493 | . . . . . . . 8 | |
62 | 60, 25, 61 | syl2anc 409 | . . . . . . 7 |
63 | dvdsexp 11814 | . . . . . . . . 9 | |
64 | 63 | 3expia 1200 | . . . . . . . 8 |
65 | 35, 59, 64 | syl2anc 409 | . . . . . . 7 |
66 | 62, 65 | sylbird 169 | . . . . . 6 |
67 | pczndvds 12262 | . . . . . . . . 9 | |
68 | 26, 27, 28, 67 | syl12anc 1231 | . . . . . . . 8 |
69 | 34, 59 | nnexpcld 10624 | . . . . . . . . . 10 |
70 | 69 | nnzd 9326 | . . . . . . . . 9 |
71 | dvdstr 11783 | . . . . . . . . 9 | |
72 | 70, 42, 27, 71 | syl3anc 1233 | . . . . . . . 8 |
73 | 68, 72 | mtod 658 | . . . . . . 7 |
74 | imnan 685 | . . . . . . 7 | |
75 | 73, 74 | sylibr 133 | . . . . . 6 |
76 | 66, 75 | syld 45 | . . . . 5 |
77 | 57, 76 | sylbid 149 | . . . 4 |
78 | condc 848 | . . . 4 DECID | |
79 | 50, 77, 78 | sylc 62 | . . 3 |
80 | 48, 79 | impbid 128 | . 2 |
81 | simp2 993 | . . . 4 | |
82 | 0zd 9217 | . . . 4 | |
83 | zdceq 9280 | . . . 4 DECID | |
84 | 81, 82, 83 | syl2anc 409 | . . 3 DECID |
85 | dcne 2351 | . . 3 DECID | |
86 | 84, 85 | sylib 121 | . 2 |
87 | 23, 80, 86 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3a 973 wceq 1348 wcel 2141 wne 2340 class class class wbr 3987 cfv 5196 (class class class)co 5851 cr 7766 cc0 7767 c1 7768 caddc 7770 cpnf 7944 cxr 7946 clt 7947 cle 7948 cn 8871 cn0 9128 cz 9205 cuz 9480 cexp 10468 cdvds 11742 cprime 12054 cpc 12231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 ax-arch 7886 ax-caucvg 7887 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-1o 6393 df-2o 6394 df-er 6511 df-en 6717 df-sup 6959 df-inf 6960 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-2 8930 df-3 8931 df-4 8932 df-n0 9129 df-z 9206 df-uz 9481 df-q 9572 df-rp 9604 df-fz 9959 df-fzo 10092 df-fl 10219 df-mod 10272 df-seqfrec 10395 df-exp 10469 df-cj 10799 df-re 10800 df-im 10801 df-rsqrt 10955 df-abs 10956 df-dvds 11743 df-gcd 11891 df-prm 12055 df-pc 12232 |
This theorem is referenced by: pcelnn 12267 pcidlem 12269 pcdvdstr 12273 pcgcd1 12274 pcfac 12295 pockthlem 12301 pockthg 12302 |
Copyright terms: Public domain | W3C validator |