| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcdvdsb | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| pcdvdsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9261 |
. . . . . . . . 9
| |
| 2 | 1 | 3ad2ant3 1022 |
. . . . . . . 8
|
| 3 | 2 | rexrd 8079 |
. . . . . . 7
|
| 4 | pnfge 9867 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | pc0 12484 |
. . . . . . 7
| |
| 7 | 6 | 3ad2ant1 1020 |
. . . . . 6
|
| 8 | 5, 7 | breqtrrd 4062 |
. . . . 5
|
| 9 | prmnn 12289 |
. . . . . . . . 9
| |
| 10 | nnexpcl 10647 |
. . . . . . . . 9
| |
| 11 | 9, 10 | sylan 283 |
. . . . . . . 8
|
| 12 | 11 | 3adant2 1018 |
. . . . . . 7
|
| 13 | 12 | nnzd 9450 |
. . . . . 6
|
| 14 | dvds0 11974 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 8, 15 | 2thd 175 |
. . . 4
|
| 17 | 16 | adantr 276 |
. . 3
|
| 18 | oveq2 5931 |
. . . . . 6
| |
| 19 | 18 | breq2d 4046 |
. . . . 5
|
| 20 | breq2 4038 |
. . . . 5
| |
| 21 | 19, 20 | bibi12d 235 |
. . . 4
|
| 22 | 21 | adantl 277 |
. . 3
|
| 23 | 17, 22 | mpbird 167 |
. 2
|
| 24 | simpl3 1004 |
. . . . . . 7
| |
| 25 | 24 | nn0zd 9449 |
. . . . . 6
|
| 26 | simpl1 1002 |
. . . . . . . 8
| |
| 27 | simpl2 1003 |
. . . . . . . 8
| |
| 28 | simpr 110 |
. . . . . . . 8
| |
| 29 | pczcl 12478 |
. . . . . . . 8
| |
| 30 | 26, 27, 28, 29 | syl12anc 1247 |
. . . . . . 7
|
| 31 | 30 | nn0zd 9449 |
. . . . . 6
|
| 32 | eluz 9617 |
. . . . . 6
| |
| 33 | 25, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | 26, 9 | syl 14 |
. . . . . . 7
|
| 35 | 34 | nnzd 9450 |
. . . . . 6
|
| 36 | dvdsexp 12029 |
. . . . . . 7
| |
| 37 | 36 | 3expia 1207 |
. . . . . 6
|
| 38 | 35, 24, 37 | syl2anc 411 |
. . . . 5
|
| 39 | 33, 38 | sylbird 170 |
. . . 4
|
| 40 | pczdvds 12494 |
. . . . . 6
| |
| 41 | 26, 27, 28, 40 | syl12anc 1247 |
. . . . 5
|
| 42 | 13 | adantr 276 |
. . . . . 6
|
| 43 | 34, 30 | nnexpcld 10790 |
. . . . . . 7
|
| 44 | 43 | nnzd 9450 |
. . . . . 6
|
| 45 | dvdstr 11996 |
. . . . . 6
| |
| 46 | 42, 44, 27, 45 | syl3anc 1249 |
. . . . 5
|
| 47 | 41, 46 | mpan2d 428 |
. . . 4
|
| 48 | 39, 47 | syld 45 |
. . 3
|
| 49 | zdcle 9405 |
. . . . 5
| |
| 50 | 25, 31, 49 | syl2anc 411 |
. . . 4
|
| 51 | nn0z 9349 |
. . . . . . . 8
| |
| 52 | nn0z 9349 |
. . . . . . . 8
| |
| 53 | zltnle 9375 |
. . . . . . . 8
| |
| 54 | 51, 52, 53 | syl2an 289 |
. . . . . . 7
|
| 55 | nn0ltp1le 9391 |
. . . . . . 7
| |
| 56 | 54, 55 | bitr3d 190 |
. . . . . 6
|
| 57 | 30, 24, 56 | syl2anc 411 |
. . . . 5
|
| 58 | peano2nn0 9292 |
. . . . . . . . . 10
| |
| 59 | 30, 58 | syl 14 |
. . . . . . . . 9
|
| 60 | 59 | nn0zd 9449 |
. . . . . . . 8
|
| 61 | eluz 9617 |
. . . . . . . 8
| |
| 62 | 60, 25, 61 | syl2anc 411 |
. . . . . . 7
|
| 63 | dvdsexp 12029 |
. . . . . . . . 9
| |
| 64 | 63 | 3expia 1207 |
. . . . . . . 8
|
| 65 | 35, 59, 64 | syl2anc 411 |
. . . . . . 7
|
| 66 | 62, 65 | sylbird 170 |
. . . . . 6
|
| 67 | pczndvds 12496 |
. . . . . . . . 9
| |
| 68 | 26, 27, 28, 67 | syl12anc 1247 |
. . . . . . . 8
|
| 69 | 34, 59 | nnexpcld 10790 |
. . . . . . . . . 10
|
| 70 | 69 | nnzd 9450 |
. . . . . . . . 9
|
| 71 | dvdstr 11996 |
. . . . . . . . 9
| |
| 72 | 70, 42, 27, 71 | syl3anc 1249 |
. . . . . . . 8
|
| 73 | 68, 72 | mtod 664 |
. . . . . . 7
|
| 74 | imnan 691 |
. . . . . . 7
| |
| 75 | 73, 74 | sylibr 134 |
. . . . . 6
|
| 76 | 66, 75 | syld 45 |
. . . . 5
|
| 77 | 57, 76 | sylbid 150 |
. . . 4
|
| 78 | condc 854 |
. . . 4
| |
| 79 | 50, 77, 78 | sylc 62 |
. . 3
|
| 80 | 48, 79 | impbid 129 |
. 2
|
| 81 | simp2 1000 |
. . . 4
| |
| 82 | 0zd 9341 |
. . . 4
| |
| 83 | zdceq 9404 |
. . . 4
| |
| 84 | 81, 82, 83 | syl2anc 411 |
. . 3
|
| 85 | dcne 2378 |
. . 3
| |
| 86 | 84, 85 | sylib 122 |
. 2
|
| 87 | 23, 80, 86 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 ax-caucvg 8002 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-recs 6365 df-frec 6451 df-1o 6476 df-2o 6477 df-er 6594 df-en 6802 df-sup 7052 df-inf 7053 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-n0 9253 df-z 9330 df-uz 9605 df-q 9697 df-rp 9732 df-fz 10087 df-fzo 10221 df-fl 10363 df-mod 10418 df-seqfrec 10543 df-exp 10634 df-cj 11010 df-re 11011 df-im 11012 df-rsqrt 11166 df-abs 11167 df-dvds 11956 df-gcd 12132 df-prm 12287 df-pc 12465 |
| This theorem is referenced by: pcelnn 12501 pcidlem 12503 pcdvdstr 12507 pcgcd1 12508 pcfac 12530 pockthlem 12536 pockthg 12537 |
| Copyright terms: Public domain | W3C validator |