ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdvdsb Unicode version

Theorem pcdvdsb 12758
Description:  P ^ A divides  N if and only if  A is at most the count of  P. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )

Proof of Theorem pcdvdsb
StepHypRef Expression
1 nn0re 9339 . . . . . . . . 9  |-  ( A  e.  NN0  ->  A  e.  RR )
213ad2ant3 1023 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  e.  RR )
32rexrd 8157 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  e.  RR* )
4 pnfge 9946 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_ +oo )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  <_ +oo )
6 pc0 12742 . . . . . . 7  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
763ad2ant1 1021 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P  pCnt  0 )  = +oo )
85, 7breqtrrd 4087 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  <_  ( P  pCnt  0
) )
9 prmnn 12547 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
10 nnexpcl 10734 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  A  e.  NN0 )  -> 
( P ^ A
)  e.  NN )
119, 10sylan 283 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ A )  e.  NN )
12113adant2 1019 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  e.  NN )
1312nnzd 9529 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  e.  ZZ )
14 dvds0 12232 . . . . . 6  |-  ( ( P ^ A )  e.  ZZ  ->  ( P ^ A )  ||  0 )
1513, 14syl 14 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  ||  0 )
168, 152thd 175 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  0 )  <->  ( P ^ A )  ||  0
) )
1716adantr 276 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) )
18 oveq2 5975 . . . . . 6  |-  ( N  =  0  ->  ( P  pCnt  N )  =  ( P  pCnt  0
) )
1918breq2d 4071 . . . . 5  |-  ( N  =  0  ->  ( A  <_  ( P  pCnt  N )  <->  A  <_  ( P 
pCnt  0 ) ) )
20 breq2 4063 . . . . 5  |-  ( N  =  0  ->  (
( P ^ A
)  ||  N  <->  ( P ^ A )  ||  0
) )
2119, 20bibi12d 235 . . . 4  |-  ( N  =  0  ->  (
( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
)  <->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) ) )
2221adantl 277 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
)  <->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) ) )
2317, 22mpbird 167 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( A  <_ 
( P  pCnt  N
)  <->  ( P ^ A )  ||  N
) )
24 simpl3 1005 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  A  e.  NN0 )
2524nn0zd 9528 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  A  e.  ZZ )
26 simpl1 1003 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  Prime )
27 simpl2 1004 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  N  e.  ZZ )
28 simpr 110 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  N  =/=  0 )
29 pczcl 12736 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  NN0 )
3026, 27, 28, 29syl12anc 1248 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P  pCnt  N
)  e.  NN0 )
3130nn0zd 9528 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P  pCnt  N
)  e.  ZZ )
32 eluz 9696 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( P  pCnt  N )  e.  ZZ )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  <->  A  <_  ( P  pCnt  N )
) )
3325, 31, 32syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  <->  A  <_  ( P  pCnt  N )
) )
3426, 9syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  NN )
3534nnzd 9529 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  ZZ )
36 dvdsexp 12287 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  NN0  /\  ( P  pCnt  N )  e.  ( ZZ>= `  A )
)  ->  ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) ) )
37363expia 1208 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  ->  ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) ) ) )
3835, 24, 37syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  ->  ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) ) ) )
3933, 38sylbird 170 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  -> 
( P ^ A
)  ||  ( P ^ ( P  pCnt  N ) ) ) )
40 pczdvds 12752 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( P  pCnt  N ) ) 
||  N )
4126, 27, 28, 40syl12anc 1248 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) ) 
||  N )
4213adantr 276 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ A
)  e.  ZZ )
4334, 30nnexpcld 10877 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) )  e.  NN )
4443nnzd 9529 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) )  e.  ZZ )
45 dvdstr 12254 . . . . . 6  |-  ( ( ( P ^ A
)  e.  ZZ  /\  ( P ^ ( P 
pCnt  N ) )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) )  /\  ( P ^ ( P  pCnt  N ) )  ||  N
)  ->  ( P ^ A )  ||  N
) )
4642, 44, 27, 45syl3anc 1250 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) )  /\  ( P ^ ( P 
pCnt  N ) )  ||  N )  ->  ( P ^ A )  ||  N ) )
4741, 46mpan2d 428 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) )  ->  ( P ^ A )  ||  N ) )
4839, 47syld 45 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  -> 
( P ^ A
)  ||  N )
)
49 zdcle 9484 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( P  pCnt  N )  e.  ZZ )  -> DECID  A  <_  ( P  pCnt  N
) )
5025, 31, 49syl2anc 411 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> DECID  A  <_  ( P  pCnt  N
) )
51 nn0z 9427 . . . . . . . 8  |-  ( ( P  pCnt  N )  e.  NN0  ->  ( P  pCnt  N )  e.  ZZ )
52 nn0z 9427 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
53 zltnle 9453 . . . . . . . 8  |-  ( ( ( P  pCnt  N
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( P  pCnt  N )  <  A  <->  -.  A  <_  ( P  pCnt  N
) ) )
5451, 52, 53syl2an 289 . . . . . . 7  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  <  A  <->  -.  A  <_  ( P  pCnt  N
) ) )
55 nn0ltp1le 9470 . . . . . . 7  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  <  A  <->  ( ( P  pCnt  N )  +  1 )  <_  A
) )
5654, 55bitr3d 190 . . . . . 6  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
5730, 24, 56syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
58 peano2nn0 9370 . . . . . . . . . 10  |-  ( ( P  pCnt  N )  e.  NN0  ->  ( ( P  pCnt  N )  +  1 )  e.  NN0 )
5930, 58syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  +  1 )  e.  NN0 )
6059nn0zd 9528 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  +  1 )  e.  ZZ )
61 eluz 9696 . . . . . . . 8  |-  ( ( ( ( P  pCnt  N )  +  1 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  ( ZZ>= `  ( ( P  pCnt  N )  +  1 ) )  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
6260, 25, 61syl2anc 411 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  <->  ( ( P  pCnt  N )  +  1 )  <_  A
) )
63 dvdsexp 12287 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( P  pCnt  N )  +  1 )  e.  NN0  /\  A  e.  ( ZZ>= `  ( ( P  pCnt  N )  +  1 ) ) )  ->  ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A ) )
64633expia 1208 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( P  pCnt  N )  +  1 )  e.  NN0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  ->  ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A ) ) )
6535, 59, 64syl2anc 411 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  ->  ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A ) ) )
6662, 65sylbird 170 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P 
pCnt  N )  +  1 )  <_  A  ->  ( P ^ ( ( P  pCnt  N )  +  1 ) ) 
||  ( P ^ A ) ) )
67 pczndvds 12754 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N )
6826, 27, 28, 67syl12anc 1248 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  -.  ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N )
6934, 59nnexpcld 10877 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  NN )
7069nnzd 9529 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  ZZ )
71 dvdstr 12254 . . . . . . . . 9  |-  ( ( ( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  ZZ  /\  ( P ^ A )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N ) )
7270, 42, 27, 71syl3anc 1250 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N ) )
7368, 72mtod 665 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  -.  ( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N ) )
74 imnan 692 . . . . . . 7  |-  ( ( ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  ( P ^ A )  ->  -.  ( P ^ A
)  ||  N )  <->  -.  ( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N ) )
7573, 74sylibr 134 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  ->  -.  ( P ^ A
)  ||  N )
)
7666, 75syld 45 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P 
pCnt  N )  +  1 )  <_  A  ->  -.  ( P ^ A
)  ||  N )
)
7757, 76sylbid 150 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  ->  -.  ( P ^ A )  ||  N ) )
78 condc 855 . . . 4  |-  (DECID  A  <_ 
( P  pCnt  N
)  ->  ( ( -.  A  <_  ( P 
pCnt  N )  ->  -.  ( P ^ A ) 
||  N )  -> 
( ( P ^ A )  ||  N  ->  A  <_  ( P  pCnt  N ) ) ) )
7950, 77, 78sylc 62 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^ A )  ||  N  ->  A  <_  ( P  pCnt  N ) ) )
8048, 79impbid 129 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )
81 simp2 1001 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  N  e.  ZZ )
82 0zd 9419 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  0  e.  ZZ )
83 zdceq 9483 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
8481, 82, 83syl2anc 411 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  -> DECID  N  =  0
)
85 dcne 2389 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
8684, 85sylib 122 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( N  =  0  \/  N  =/=  0 ) )
8723, 80, 86mpjaodan 800 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963   +oocpnf 8139   RR*cxr 8141    < clt 8142    <_ cle 8143   NNcn 9071   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ^cexp 10720    || cdvds 12213   Primecprime 12544    pCnt cpc 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-pc 12723
This theorem is referenced by:  pcelnn  12759  pcidlem  12761  pcdvdstr  12765  pcgcd1  12766  pcfac  12788  pockthlem  12794  pockthg  12795
  Copyright terms: Public domain W3C validator