ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdvdsb Unicode version

Theorem pcdvdsb 12516
Description:  P ^ A divides  N if and only if  A is at most the count of  P. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )

Proof of Theorem pcdvdsb
StepHypRef Expression
1 nn0re 9277 . . . . . . . . 9  |-  ( A  e.  NN0  ->  A  e.  RR )
213ad2ant3 1022 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  e.  RR )
32rexrd 8095 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  e.  RR* )
4 pnfge 9883 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_ +oo )
53, 4syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  <_ +oo )
6 pc0 12500 . . . . . . 7  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
763ad2ant1 1020 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P  pCnt  0 )  = +oo )
85, 7breqtrrd 4062 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  A  <_  ( P  pCnt  0
) )
9 prmnn 12305 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
10 nnexpcl 10663 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  A  e.  NN0 )  -> 
( P ^ A
)  e.  NN )
119, 10sylan 283 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ A )  e.  NN )
12113adant2 1018 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  e.  NN )
1312nnzd 9466 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  e.  ZZ )
14 dvds0 11990 . . . . . 6  |-  ( ( P ^ A )  e.  ZZ  ->  ( P ^ A )  ||  0 )
1513, 14syl 14 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( P ^ A )  ||  0 )
168, 152thd 175 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  0 )  <->  ( P ^ A )  ||  0
) )
1716adantr 276 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) )
18 oveq2 5933 . . . . . 6  |-  ( N  =  0  ->  ( P  pCnt  N )  =  ( P  pCnt  0
) )
1918breq2d 4046 . . . . 5  |-  ( N  =  0  ->  ( A  <_  ( P  pCnt  N )  <->  A  <_  ( P 
pCnt  0 ) ) )
20 breq2 4038 . . . . 5  |-  ( N  =  0  ->  (
( P ^ A
)  ||  N  <->  ( P ^ A )  ||  0
) )
2119, 20bibi12d 235 . . . 4  |-  ( N  =  0  ->  (
( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
)  <->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) ) )
2221adantl 277 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
)  <->  ( A  <_ 
( P  pCnt  0
)  <->  ( P ^ A )  ||  0
) ) )
2317, 22mpbird 167 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =  0 )  ->  ( A  <_ 
( P  pCnt  N
)  <->  ( P ^ A )  ||  N
) )
24 simpl3 1004 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  A  e.  NN0 )
2524nn0zd 9465 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  A  e.  ZZ )
26 simpl1 1002 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  Prime )
27 simpl2 1003 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  N  e.  ZZ )
28 simpr 110 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  N  =/=  0 )
29 pczcl 12494 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  NN0 )
3026, 27, 28, 29syl12anc 1247 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P  pCnt  N
)  e.  NN0 )
3130nn0zd 9465 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P  pCnt  N
)  e.  ZZ )
32 eluz 9633 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( P  pCnt  N )  e.  ZZ )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  <->  A  <_  ( P  pCnt  N )
) )
3325, 31, 32syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  <->  A  <_  ( P  pCnt  N )
) )
3426, 9syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  NN )
3534nnzd 9466 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  P  e.  ZZ )
36 dvdsexp 12045 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  NN0  /\  ( P  pCnt  N )  e.  ( ZZ>= `  A )
)  ->  ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) ) )
37363expia 1207 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  ->  ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) ) ) )
3835, 24, 37syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  e.  ( ZZ>= `  A )  ->  ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) ) ) )
3933, 38sylbird 170 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  -> 
( P ^ A
)  ||  ( P ^ ( P  pCnt  N ) ) ) )
40 pczdvds 12510 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( P  pCnt  N ) ) 
||  N )
4126, 27, 28, 40syl12anc 1247 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) ) 
||  N )
4213adantr 276 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ A
)  e.  ZZ )
4334, 30nnexpcld 10806 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) )  e.  NN )
4443nnzd 9466 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ ( P  pCnt  N ) )  e.  ZZ )
45 dvdstr 12012 . . . . . 6  |-  ( ( ( P ^ A
)  e.  ZZ  /\  ( P ^ ( P 
pCnt  N ) )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) )  /\  ( P ^ ( P  pCnt  N ) )  ||  N
)  ->  ( P ^ A )  ||  N
) )
4642, 44, 27, 45syl3anc 1249 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P ^ A )  ||  ( P ^ ( P 
pCnt  N ) )  /\  ( P ^ ( P 
pCnt  N ) )  ||  N )  ->  ( P ^ A )  ||  N ) )
4741, 46mpan2d 428 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^ A )  ||  ( P ^ ( P  pCnt  N ) )  ->  ( P ^ A )  ||  N ) )
4839, 47syld 45 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  -> 
( P ^ A
)  ||  N )
)
49 zdcle 9421 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( P  pCnt  N )  e.  ZZ )  -> DECID  A  <_  ( P  pCnt  N
) )
5025, 31, 49syl2anc 411 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> DECID  A  <_  ( P  pCnt  N
) )
51 nn0z 9365 . . . . . . . 8  |-  ( ( P  pCnt  N )  e.  NN0  ->  ( P  pCnt  N )  e.  ZZ )
52 nn0z 9365 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
53 zltnle 9391 . . . . . . . 8  |-  ( ( ( P  pCnt  N
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( P  pCnt  N )  <  A  <->  -.  A  <_  ( P  pCnt  N
) ) )
5451, 52, 53syl2an 289 . . . . . . 7  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  <  A  <->  -.  A  <_  ( P  pCnt  N
) ) )
55 nn0ltp1le 9407 . . . . . . 7  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( ( P  pCnt  N )  <  A  <->  ( ( P  pCnt  N )  +  1 )  <_  A
) )
5654, 55bitr3d 190 . . . . . 6  |-  ( ( ( P  pCnt  N
)  e.  NN0  /\  A  e.  NN0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
5730, 24, 56syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
58 peano2nn0 9308 . . . . . . . . . 10  |-  ( ( P  pCnt  N )  e.  NN0  ->  ( ( P  pCnt  N )  +  1 )  e.  NN0 )
5930, 58syl 14 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  +  1 )  e.  NN0 )
6059nn0zd 9465 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P  pCnt  N )  +  1 )  e.  ZZ )
61 eluz 9633 . . . . . . . 8  |-  ( ( ( ( P  pCnt  N )  +  1 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  ( ZZ>= `  ( ( P  pCnt  N )  +  1 ) )  <->  ( ( P 
pCnt  N )  +  1 )  <_  A )
)
6260, 25, 61syl2anc 411 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  <->  ( ( P  pCnt  N )  +  1 )  <_  A
) )
63 dvdsexp 12045 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( P  pCnt  N )  +  1 )  e.  NN0  /\  A  e.  ( ZZ>= `  ( ( P  pCnt  N )  +  1 ) ) )  ->  ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A ) )
64633expia 1207 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( P  pCnt  N )  +  1 )  e.  NN0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  ->  ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A ) ) )
6535, 59, 64syl2anc 411 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  e.  (
ZZ>= `  ( ( P 
pCnt  N )  +  1 ) )  ->  ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A ) ) )
6662, 65sylbird 170 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P 
pCnt  N )  +  1 )  <_  A  ->  ( P ^ ( ( P  pCnt  N )  +  1 ) ) 
||  ( P ^ A ) ) )
67 pczndvds 12512 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N )
6826, 27, 28, 67syl12anc 1247 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  -.  ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N )
6934, 59nnexpcld 10806 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  NN )
7069nnzd 9466 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  ZZ )
71 dvdstr 12012 . . . . . . . . 9  |-  ( ( ( P ^ (
( P  pCnt  N
)  +  1 ) )  e.  ZZ  /\  ( P ^ A )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N ) )
7270, 42, 27, 71syl3anc 1249 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P ^ ( ( P 
pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N )  -> 
( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  N ) )
7368, 72mtod 664 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  ->  -.  ( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N ) )
74 imnan 691 . . . . . . 7  |-  ( ( ( P ^ (
( P  pCnt  N
)  +  1 ) )  ||  ( P ^ A )  ->  -.  ( P ^ A
)  ||  N )  <->  -.  ( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  /\  ( P ^ A ) 
||  N ) )
7573, 74sylibr 134 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^
( ( P  pCnt  N )  +  1 ) )  ||  ( P ^ A )  ->  -.  ( P ^ A
)  ||  N )
)
7666, 75syld 45 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( ( P 
pCnt  N )  +  1 )  <_  A  ->  -.  ( P ^ A
)  ||  N )
)
7757, 76sylbid 150 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( -.  A  <_ 
( P  pCnt  N
)  ->  -.  ( P ^ A )  ||  N ) )
78 condc 854 . . . 4  |-  (DECID  A  <_ 
( P  pCnt  N
)  ->  ( ( -.  A  <_  ( P 
pCnt  N )  ->  -.  ( P ^ A ) 
||  N )  -> 
( ( P ^ A )  ||  N  ->  A  <_  ( P  pCnt  N ) ) ) )
7950, 77, 78sylc 62 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( ( P ^ A )  ||  N  ->  A  <_  ( P  pCnt  N ) ) )
8048, 79impbid 129 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  /\  N  =/=  0 )  -> 
( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )
81 simp2 1000 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  N  e.  ZZ )
82 0zd 9357 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  0  e.  ZZ )
83 zdceq 9420 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
8481, 82, 83syl2anc 411 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  -> DECID  N  =  0
)
85 dcne 2378 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
8684, 85sylib 122 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( N  =  0  \/  N  =/=  0 ) )
8723, 80, 86mpjaodan 799 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901   +oocpnf 8077   RR*cxr 8079    < clt 8080    <_ cle 8081   NNcn 9009   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ^cexp 10649    || cdvds 11971   Primecprime 12302    pCnt cpc 12480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-pc 12481
This theorem is referenced by:  pcelnn  12517  pcidlem  12519  pcdvdstr  12523  pcgcd1  12524  pcfac  12546  pockthlem  12552  pockthg  12553
  Copyright terms: Public domain W3C validator