ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirprm Unicode version

Theorem lgsdirprm 14474
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )

Proof of Theorem lgsdirprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1000 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  A  e.  ZZ )
2 simpl2 1001 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  B  e.  ZZ )
3 lgsdir2 14473 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
41, 2, 3syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
5 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  P  =  2 )
65oveq2d 5893 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  x.  B )  /L 2 ) )
75oveq2d 5893 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( A  /L P )  =  ( A  /L 2 ) )
85oveq2d 5893 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( B  /L P )  =  ( B  /L 2 ) )
97, 8oveq12d 5895 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  /L P )  x.  ( B  /L P ) )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
104, 6, 93eqtr4d 2220 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  /L P )  x.  ( B  /L
P ) ) )
11 simpl1 1000 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  ZZ )
12 simpl2 1001 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  ZZ )
1311, 12zmulcld 9383 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  x.  B
)  e.  ZZ )
14 simpl3 1002 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  Prime )
15 prmz 12113 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1614, 15syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ZZ )
17 lgscl 14454 . . . . 5  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( A  x.  B )  /L
P )  e.  ZZ )
1813, 16, 17syl2anc 411 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  ZZ )
1918zcnd 9378 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  CC )
20 lgscl 14454 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
2111, 16, 20syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  ZZ )
22 lgscl 14454 . . . . . 6  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  ZZ )
2312, 16, 22syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  ZZ )
2421, 23zmulcld 9383 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )
2524zcnd 9378 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  CC )
2619, 25subcld 8270 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  CC )
2718, 24zsubcld 9382 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )
28 zabscl 11097 . . . . . . 7  |-  ( ( ( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  ZZ  ->  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  ZZ )
29 zq 9628 . . . . . . 7  |-  ( ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  ZZ  ->  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  e.  QQ )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  QQ )
31 prmnn 12112 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
32 nnq 9635 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
3314, 31, 323syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  QQ )
3426absge0d 11195 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
3526abscld 11192 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  RR )
36 2re 8991 . . . . . . . 8  |-  2  e.  RR
3736a1i 9 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  e.  RR )
3814, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  NN )
3938nnred 8934 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  RR )
4019abscld 11192 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  e.  RR )
4125abscld 11192 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  RR )
4240, 41readdcld 7989 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  RR )
4319, 25abs2dif2d 11209 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
44 1red 7974 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
1  e.  RR )
45 lgsle1 14455 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
4613, 16, 45syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
47 eqid 2177 . . . . . . . . . . . . . 14  |-  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }
4847lgscl2 14452 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
4911, 16, 48syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5047lgscl2 14452 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5112, 16, 50syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5247lgslem3 14442 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }  /\  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)  ->  ( ( A  /L P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } )
5349, 51, 52syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e. 
{ x  e.  ZZ  |  ( abs `  x
)  <_  1 }
)
54 fveq2 5517 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( abs `  x
)  =  ( abs `  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )
5554breq1d 4015 . . . . . . . . . . . . 13  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( ( abs `  x )  <_  1  <->  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1
) )
5655elrab 2895 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } 
<->  ( ( ( A  /L P )  x.  ( B  /L P ) )  e.  ZZ  /\  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1 ) )
5756simprbi 275 . . . . . . . . . . 11  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  ->  ( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5853, 57syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5940, 41, 44, 44, 46, 58le2addd 8522 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
( 1  +  1 ) )
60 df-2 8980 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
6159, 60breqtrrdi 4047 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
6235, 42, 37, 43, 61letrd 8083 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
63 prmuz2 12133 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
64 eluzle 9542 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
6514, 63, 643syl 17 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <_  P )
66 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  =/=  2 )
67 2z 9283 . . . . . . . . 9  |-  2  e.  ZZ
68 zltlen 9333 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
6967, 16, 68sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
7065, 66, 69mpbir2and 944 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <  P )
7135, 37, 39, 62, 70lelttrd 8084 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  < 
P )
72 modqid 10351 . . . . . 6  |-  ( ( ( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  QQ  /\  P  e.  QQ )  /\  (
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  /\  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  <  P ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  mod  P
)  =  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
7330, 33, 34, 71, 72syl22anc 1239 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
7411zcnd 9378 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  CC )
7512zcnd 9378 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  CC )
76 eldifsn 3721 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
7714, 66, 76sylanbrc 417 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ( Prime  \  { 2 } ) )
78 oddprm 12261 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
7977, 78syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
8079nnnn0d 9231 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
8174, 75, 80mulexpd 10671 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( A ^ ( ( P  -  1 )  /  2 ) )  x.  ( B ^
( ( P  - 
1 )  /  2
) ) ) )
82 zexpcl 10537 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8311, 80, 82syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8483zcnd 9378 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  CC )
85 zexpcl 10537 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8612, 80, 85syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8786zcnd 9378 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  CC )
8884, 87mulcomd 7981 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) ) )
8981, 88eqtrd 2210 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( B ^ ( ( P  -  1 )  /  2 ) )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) ) )
9089oveq1d 5892 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B ) ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( ( ( B ^ (
( P  -  1 )  /  2 ) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
91 lgsvalmod 14459 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  x.  B
)  /L P )  mod  P )  =  ( ( ( A  x.  B ) ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
9213, 77, 91syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
93 zq 9628 . . . . . . . . . . . 12  |-  ( ( A  /L P )  e.  ZZ  ->  ( A  /L P )  e.  QQ )
9421, 93syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  QQ )
95 zq 9628 . . . . . . . . . . . 12  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
9683, 95syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
9738nngt0d 8965 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <  P )
98 lgsvalmod 14459 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
9911, 77, 98syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  mod 
P )  =  ( ( A ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
10094, 96, 23, 33, 97, 99modqmul1 10379 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P ) )
10123zcnd 9378 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  CC )
10284, 101mulcomd 7981 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B  /L P ) )  =  ( ( B  /L P )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) ) )
103102oveq1d 5892 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P )  =  ( ( ( B  /L P )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
104 zq 9628 . . . . . . . . . . . 12  |-  ( ( B  /L P )  e.  ZZ  ->  ( B  /L P )  e.  QQ )
10523, 104syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  QQ )
106 zq 9628 . . . . . . . . . . . 12  |-  ( ( B ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  ( B ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
10786, 106syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
108 lgsvalmod 14459 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( B  /L P )  mod  P )  =  ( ( B ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
10912, 77, 108syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( B  /L P )  mod 
P )  =  ( ( B ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
110105, 107, 83, 33, 97, 109modqmul1 10379 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( B  /L P )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) )  mod 
P )  =  ( ( ( B ^
( ( P  - 
1 )  /  2
) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
111100, 103, 1103eqtrd 2214 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
11290, 92, 1113eqtr4d 2220 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P ) )
113 moddvds 11808 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( ( A  x.  B )  /L
P )  e.  ZZ  /\  ( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )  ->  (
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
11438, 18, 24, 113syl3anc 1238 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( ( A  x.  B )  /L P )  mod  P )  =  ( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
115112, 114mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )
116 dvdsabsb 11819 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
11716, 27, 116syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
118115, 117mpbid 147 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
119 dvdsmod0 11802 . . . . . 6  |-  ( ( P  e.  NN  /\  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  mod  P )  =  0 )
12038, 118, 119syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  0 )
12173, 120eqtr3d 2212 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  =  0 )
12226, 121abs00d 11197 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  =  0 )
12319, 25, 122subeq0d 8278 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  =  ( ( A  /L
P )  x.  ( B  /L P ) ) )
124153ad2ant3 1020 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  P  e.  ZZ )
12567a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  2  e.  ZZ )
126 zdceq 9330 . . . 4  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  -> DECID  P  =  2 )
127124, 125, 126syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  -> DECID  P  =  2
)
128 dcne 2358 . . 3  |-  (DECID  P  =  2  <->  ( P  =  2  \/  P  =/=  2 ) )
129127, 128sylib 122 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  ( P  =  2  \/  P  =/=  2 ) )
13010, 123, 129mpjaodan 798 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   {crab 2459    \ cdif 3128   {csn 3594   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    <_ cle 7995    - cmin 8130    / cdiv 8631   NNcn 8921   2c2 8972   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   QQcq 9621    mod cmo 10324   ^cexp 10521   abscabs 11008    || cdvds 11796   Primecprime 12109    /Lclgs 14437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-2o 6420  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-proddc 11561  df-dvds 11797  df-gcd 11946  df-prm 12110  df-phi 12213  df-pc 12287  df-lgs 14438
This theorem is referenced by:  lgsdir  14475
  Copyright terms: Public domain W3C validator