ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirprm Unicode version

Theorem lgsdirprm 15453
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )

Proof of Theorem lgsdirprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  A  e.  ZZ )
2 simpl2 1003 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  B  e.  ZZ )
3 lgsdir2 15452 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
41, 2, 3syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
5 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  P  =  2 )
65oveq2d 5959 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  x.  B )  /L 2 ) )
75oveq2d 5959 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( A  /L P )  =  ( A  /L 2 ) )
85oveq2d 5959 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( B  /L P )  =  ( B  /L 2 ) )
97, 8oveq12d 5961 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  /L P )  x.  ( B  /L P ) )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
104, 6, 93eqtr4d 2247 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  /L P )  x.  ( B  /L
P ) ) )
11 simpl1 1002 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  ZZ )
12 simpl2 1003 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  ZZ )
1311, 12zmulcld 9500 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  x.  B
)  e.  ZZ )
14 simpl3 1004 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  Prime )
15 prmz 12375 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1614, 15syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ZZ )
17 lgscl 15433 . . . . 5  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( A  x.  B )  /L
P )  e.  ZZ )
1813, 16, 17syl2anc 411 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  ZZ )
1918zcnd 9495 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  CC )
20 lgscl 15433 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
2111, 16, 20syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  ZZ )
22 lgscl 15433 . . . . . 6  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  ZZ )
2312, 16, 22syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  ZZ )
2421, 23zmulcld 9500 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )
2524zcnd 9495 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  CC )
2619, 25subcld 8382 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  CC )
2718, 24zsubcld 9499 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )
28 zabscl 11339 . . . . . . 7  |-  ( ( ( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  ZZ  ->  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  ZZ )
29 zq 9746 . . . . . . 7  |-  ( ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  ZZ  ->  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  e.  QQ )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  QQ )
31 prmnn 12374 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
32 nnq 9753 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
3314, 31, 323syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  QQ )
3426absge0d 11437 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
3526abscld 11434 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  RR )
36 2re 9105 . . . . . . . 8  |-  2  e.  RR
3736a1i 9 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  e.  RR )
3814, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  NN )
3938nnred 9048 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  RR )
4019abscld 11434 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  e.  RR )
4125abscld 11434 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  RR )
4240, 41readdcld 8101 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  RR )
4319, 25abs2dif2d 11451 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
44 1red 8086 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
1  e.  RR )
45 lgsle1 15434 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
4613, 16, 45syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
47 eqid 2204 . . . . . . . . . . . . . 14  |-  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }
4847lgscl2 15431 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
4911, 16, 48syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5047lgscl2 15431 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5112, 16, 50syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5247lgslem3 15421 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }  /\  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)  ->  ( ( A  /L P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } )
5349, 51, 52syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e. 
{ x  e.  ZZ  |  ( abs `  x
)  <_  1 }
)
54 fveq2 5575 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( abs `  x
)  =  ( abs `  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )
5554breq1d 4053 . . . . . . . . . . . . 13  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( ( abs `  x )  <_  1  <->  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1
) )
5655elrab 2928 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } 
<->  ( ( ( A  /L P )  x.  ( B  /L P ) )  e.  ZZ  /\  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1 ) )
5756simprbi 275 . . . . . . . . . . 11  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  ->  ( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5853, 57syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5940, 41, 44, 44, 46, 58le2addd 8635 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
( 1  +  1 ) )
60 df-2 9094 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
6159, 60breqtrrdi 4085 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
6235, 42, 37, 43, 61letrd 8195 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
63 prmuz2 12395 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
64 eluzle 9659 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
6514, 63, 643syl 17 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <_  P )
66 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  =/=  2 )
67 2z 9399 . . . . . . . . 9  |-  2  e.  ZZ
68 zltlen 9450 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
6967, 16, 68sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
7065, 66, 69mpbir2and 946 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <  P )
7135, 37, 39, 62, 70lelttrd 8196 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  < 
P )
72 modqid 10492 . . . . . 6  |-  ( ( ( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  QQ  /\  P  e.  QQ )  /\  (
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  /\  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  <  P ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  mod  P
)  =  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
7330, 33, 34, 71, 72syl22anc 1250 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
7411zcnd 9495 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  CC )
7512zcnd 9495 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  CC )
76 eldifsn 3759 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
7714, 66, 76sylanbrc 417 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ( Prime  \  { 2 } ) )
78 oddprm 12524 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
7977, 78syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
8079nnnn0d 9347 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
8174, 75, 80mulexpd 10831 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( A ^ ( ( P  -  1 )  /  2 ) )  x.  ( B ^
( ( P  - 
1 )  /  2
) ) ) )
82 zexpcl 10697 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8311, 80, 82syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8483zcnd 9495 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  CC )
85 zexpcl 10697 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8612, 80, 85syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8786zcnd 9495 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  CC )
8884, 87mulcomd 8093 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) ) )
8981, 88eqtrd 2237 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( B ^ ( ( P  -  1 )  /  2 ) )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) ) )
9089oveq1d 5958 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B ) ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( ( ( B ^ (
( P  -  1 )  /  2 ) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
91 lgsvalmod 15438 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  x.  B
)  /L P )  mod  P )  =  ( ( ( A  x.  B ) ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
9213, 77, 91syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
93 zq 9746 . . . . . . . . . . . 12  |-  ( ( A  /L P )  e.  ZZ  ->  ( A  /L P )  e.  QQ )
9421, 93syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  QQ )
95 zq 9746 . . . . . . . . . . . 12  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
9683, 95syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
9738nngt0d 9079 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <  P )
98 lgsvalmod 15438 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
9911, 77, 98syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  mod 
P )  =  ( ( A ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
10094, 96, 23, 33, 97, 99modqmul1 10520 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P ) )
10123zcnd 9495 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  CC )
10284, 101mulcomd 8093 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B  /L P ) )  =  ( ( B  /L P )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) ) )
103102oveq1d 5958 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P )  =  ( ( ( B  /L P )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
104 zq 9746 . . . . . . . . . . . 12  |-  ( ( B  /L P )  e.  ZZ  ->  ( B  /L P )  e.  QQ )
10523, 104syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  QQ )
106 zq 9746 . . . . . . . . . . . 12  |-  ( ( B ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  ( B ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
10786, 106syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
108 lgsvalmod 15438 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( B  /L P )  mod  P )  =  ( ( B ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
10912, 77, 108syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( B  /L P )  mod 
P )  =  ( ( B ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
110105, 107, 83, 33, 97, 109modqmul1 10520 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( B  /L P )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) )  mod 
P )  =  ( ( ( B ^
( ( P  - 
1 )  /  2
) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
111100, 103, 1103eqtrd 2241 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
11290, 92, 1113eqtr4d 2247 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P ) )
113 moddvds 12052 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( ( A  x.  B )  /L
P )  e.  ZZ  /\  ( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )  ->  (
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
11438, 18, 24, 113syl3anc 1249 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( ( A  x.  B )  /L P )  mod  P )  =  ( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
115112, 114mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )
116 dvdsabsb 12063 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
11716, 27, 116syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
118115, 117mpbid 147 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
119 dvdsmod0 12046 . . . . . 6  |-  ( ( P  e.  NN  /\  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  mod  P )  =  0 )
12038, 118, 119syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  0 )
12173, 120eqtr3d 2239 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  =  0 )
12226, 121abs00d 11439 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  =  0 )
12319, 25, 122subeq0d 8390 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  =  ( ( A  /L
P )  x.  ( B  /L P ) ) )
124153ad2ant3 1022 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  P  e.  ZZ )
12567a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  2  e.  ZZ )
126 zdceq 9447 . . . 4  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  -> DECID  P  =  2 )
127124, 125, 126syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  -> DECID  P  =  2
)
128 dcne 2386 . . 3  |-  (DECID  P  =  2  <->  ( P  =  2  \/  P  =/=  2 ) )
129127, 128sylib 122 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  ( P  =  2  \/  P  =/=  2 ) )
13010, 123, 129mpjaodan 799 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375   {crab 2487    \ cdif 3162   {csn 3632   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   RRcr 7923   0cc0 7924   1c1 7925    + caddc 7927    x. cmul 7929    < clt 8106    <_ cle 8107    - cmin 8242    / cdiv 8744   NNcn 9035   2c2 9086   NN0cn0 9294   ZZcz 9371   ZZ>=cuz 9647   QQcq 9739    mod cmo 10465   ^cexp 10681   abscabs 11250    || cdvds 12040   Primecprime 12371    /Lclgs 15416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-2o 6502  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-proddc 11804  df-dvds 12041  df-gcd 12217  df-prm 12372  df-phi 12475  df-pc 12550  df-lgs 15417
This theorem is referenced by:  lgsdir  15454
  Copyright terms: Public domain W3C validator