ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirprm Unicode version

Theorem lgsdirprm 15275
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )

Proof of Theorem lgsdirprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  A  e.  ZZ )
2 simpl2 1003 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  B  e.  ZZ )
3 lgsdir2 15274 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
41, 2, 3syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
5 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  P  =  2 )
65oveq2d 5938 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  x.  B )  /L 2 ) )
75oveq2d 5938 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( A  /L P )  =  ( A  /L 2 ) )
85oveq2d 5938 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( B  /L P )  =  ( B  /L 2 ) )
97, 8oveq12d 5940 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  /L P )  x.  ( B  /L P ) )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
104, 6, 93eqtr4d 2239 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  /L P )  x.  ( B  /L
P ) ) )
11 simpl1 1002 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  ZZ )
12 simpl2 1003 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  ZZ )
1311, 12zmulcld 9454 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  x.  B
)  e.  ZZ )
14 simpl3 1004 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  Prime )
15 prmz 12279 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1614, 15syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ZZ )
17 lgscl 15255 . . . . 5  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( A  x.  B )  /L
P )  e.  ZZ )
1813, 16, 17syl2anc 411 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  ZZ )
1918zcnd 9449 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  CC )
20 lgscl 15255 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
2111, 16, 20syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  ZZ )
22 lgscl 15255 . . . . . 6  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  ZZ )
2312, 16, 22syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  ZZ )
2421, 23zmulcld 9454 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )
2524zcnd 9449 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  CC )
2619, 25subcld 8337 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  CC )
2718, 24zsubcld 9453 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )
28 zabscl 11251 . . . . . . 7  |-  ( ( ( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  ZZ  ->  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  ZZ )
29 zq 9700 . . . . . . 7  |-  ( ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  ZZ  ->  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  e.  QQ )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  QQ )
31 prmnn 12278 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
32 nnq 9707 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
3314, 31, 323syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  QQ )
3426absge0d 11349 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
3526abscld 11346 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  RR )
36 2re 9060 . . . . . . . 8  |-  2  e.  RR
3736a1i 9 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  e.  RR )
3814, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  NN )
3938nnred 9003 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  RR )
4019abscld 11346 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  e.  RR )
4125abscld 11346 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  RR )
4240, 41readdcld 8056 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  RR )
4319, 25abs2dif2d 11363 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
44 1red 8041 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
1  e.  RR )
45 lgsle1 15256 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
4613, 16, 45syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
47 eqid 2196 . . . . . . . . . . . . . 14  |-  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }
4847lgscl2 15253 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
4911, 16, 48syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5047lgscl2 15253 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5112, 16, 50syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5247lgslem3 15243 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }  /\  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)  ->  ( ( A  /L P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } )
5349, 51, 52syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e. 
{ x  e.  ZZ  |  ( abs `  x
)  <_  1 }
)
54 fveq2 5558 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( abs `  x
)  =  ( abs `  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )
5554breq1d 4043 . . . . . . . . . . . . 13  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( ( abs `  x )  <_  1  <->  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1
) )
5655elrab 2920 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } 
<->  ( ( ( A  /L P )  x.  ( B  /L P ) )  e.  ZZ  /\  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1 ) )
5756simprbi 275 . . . . . . . . . . 11  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  ->  ( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5853, 57syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5940, 41, 44, 44, 46, 58le2addd 8590 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
( 1  +  1 ) )
60 df-2 9049 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
6159, 60breqtrrdi 4075 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
6235, 42, 37, 43, 61letrd 8150 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
63 prmuz2 12299 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
64 eluzle 9613 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
6514, 63, 643syl 17 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <_  P )
66 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  =/=  2 )
67 2z 9354 . . . . . . . . 9  |-  2  e.  ZZ
68 zltlen 9404 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
6967, 16, 68sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
7065, 66, 69mpbir2and 946 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <  P )
7135, 37, 39, 62, 70lelttrd 8151 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  < 
P )
72 modqid 10441 . . . . . 6  |-  ( ( ( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  QQ  /\  P  e.  QQ )  /\  (
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  /\  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  <  P ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  mod  P
)  =  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
7330, 33, 34, 71, 72syl22anc 1250 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
7411zcnd 9449 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  CC )
7512zcnd 9449 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  CC )
76 eldifsn 3749 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
7714, 66, 76sylanbrc 417 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ( Prime  \  { 2 } ) )
78 oddprm 12428 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
7977, 78syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
8079nnnn0d 9302 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
8174, 75, 80mulexpd 10780 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( A ^ ( ( P  -  1 )  /  2 ) )  x.  ( B ^
( ( P  - 
1 )  /  2
) ) ) )
82 zexpcl 10646 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8311, 80, 82syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8483zcnd 9449 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  CC )
85 zexpcl 10646 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8612, 80, 85syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8786zcnd 9449 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  CC )
8884, 87mulcomd 8048 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) ) )
8981, 88eqtrd 2229 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( B ^ ( ( P  -  1 )  /  2 ) )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) ) )
9089oveq1d 5937 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B ) ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( ( ( B ^ (
( P  -  1 )  /  2 ) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
91 lgsvalmod 15260 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  x.  B
)  /L P )  mod  P )  =  ( ( ( A  x.  B ) ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
9213, 77, 91syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
93 zq 9700 . . . . . . . . . . . 12  |-  ( ( A  /L P )  e.  ZZ  ->  ( A  /L P )  e.  QQ )
9421, 93syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  QQ )
95 zq 9700 . . . . . . . . . . . 12  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
9683, 95syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
9738nngt0d 9034 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <  P )
98 lgsvalmod 15260 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
9911, 77, 98syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  mod 
P )  =  ( ( A ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
10094, 96, 23, 33, 97, 99modqmul1 10469 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P ) )
10123zcnd 9449 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  CC )
10284, 101mulcomd 8048 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B  /L P ) )  =  ( ( B  /L P )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) ) )
103102oveq1d 5937 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P )  =  ( ( ( B  /L P )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
104 zq 9700 . . . . . . . . . . . 12  |-  ( ( B  /L P )  e.  ZZ  ->  ( B  /L P )  e.  QQ )
10523, 104syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  QQ )
106 zq 9700 . . . . . . . . . . . 12  |-  ( ( B ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  ( B ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
10786, 106syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
108 lgsvalmod 15260 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( B  /L P )  mod  P )  =  ( ( B ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
10912, 77, 108syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( B  /L P )  mod 
P )  =  ( ( B ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
110105, 107, 83, 33, 97, 109modqmul1 10469 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( B  /L P )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) )  mod 
P )  =  ( ( ( B ^
( ( P  - 
1 )  /  2
) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
111100, 103, 1103eqtrd 2233 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
11290, 92, 1113eqtr4d 2239 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P ) )
113 moddvds 11964 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( ( A  x.  B )  /L
P )  e.  ZZ  /\  ( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )  ->  (
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
11438, 18, 24, 113syl3anc 1249 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( ( A  x.  B )  /L P )  mod  P )  =  ( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
115112, 114mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )
116 dvdsabsb 11975 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
11716, 27, 116syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
118115, 117mpbid 147 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
119 dvdsmod0 11958 . . . . . 6  |-  ( ( P  e.  NN  /\  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  mod  P )  =  0 )
12038, 118, 119syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  0 )
12173, 120eqtr3d 2231 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  =  0 )
12226, 121abs00d 11351 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  =  0 )
12319, 25, 122subeq0d 8345 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  =  ( ( A  /L
P )  x.  ( B  /L P ) ) )
124153ad2ant3 1022 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  P  e.  ZZ )
12567a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  2  e.  ZZ )
126 zdceq 9401 . . . 4  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  -> DECID  P  =  2 )
127124, 125, 126syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  -> DECID  P  =  2
)
128 dcne 2378 . . 3  |-  (DECID  P  =  2  <->  ( P  =  2  \/  P  =/=  2 ) )
129127, 128sylib 122 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  ( P  =  2  \/  P  =/=  2 ) )
13010, 123, 129mpjaodan 799 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   {crab 2479    \ cdif 3154   {csn 3622   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197    / cdiv 8699   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   QQcq 9693    mod cmo 10414   ^cexp 10630   abscabs 11162    || cdvds 11952   Primecprime 12275    /Lclgs 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379  df-pc 12454  df-lgs 15239
This theorem is referenced by:  lgsdir  15276
  Copyright terms: Public domain W3C validator