ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirprm Unicode version

Theorem lgsdirprm 15586
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )

Proof of Theorem lgsdirprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1003 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  A  e.  ZZ )
2 simpl2 1004 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  B  e.  ZZ )
3 lgsdir2 15585 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
41, 2, 3syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
5 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  P  =  2 )
65oveq2d 5973 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  x.  B )  /L 2 ) )
75oveq2d 5973 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( A  /L P )  =  ( A  /L 2 ) )
85oveq2d 5973 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( B  /L P )  =  ( B  /L 2 ) )
97, 8oveq12d 5975 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  /L P )  x.  ( B  /L P ) )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
104, 6, 93eqtr4d 2249 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =  2 )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  /L P )  x.  ( B  /L
P ) ) )
11 simpl1 1003 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  ZZ )
12 simpl2 1004 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  ZZ )
1311, 12zmulcld 9521 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  x.  B
)  e.  ZZ )
14 simpl3 1005 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  Prime )
15 prmz 12508 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1614, 15syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ZZ )
17 lgscl 15566 . . . . 5  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( A  x.  B )  /L
P )  e.  ZZ )
1813, 16, 17syl2anc 411 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  ZZ )
1918zcnd 9516 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  e.  CC )
20 lgscl 15566 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  ZZ )
2111, 16, 20syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  ZZ )
22 lgscl 15566 . . . . . 6  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  ZZ )
2312, 16, 22syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  ZZ )
2421, 23zmulcld 9521 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )
2524zcnd 9516 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e.  CC )
2619, 25subcld 8403 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  CC )
2718, 24zsubcld 9520 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )
28 zabscl 11472 . . . . . . 7  |-  ( ( ( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  ZZ  ->  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  ZZ )
29 zq 9767 . . . . . . 7  |-  ( ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  ZZ  ->  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  e.  QQ )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  QQ )
31 prmnn 12507 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
32 nnq 9774 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
3314, 31, 323syl 17 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  QQ )
3426absge0d 11570 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
3526abscld 11567 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  RR )
36 2re 9126 . . . . . . . 8  |-  2  e.  RR
3736a1i 9 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  e.  RR )
3814, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  NN )
3938nnred 9069 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  RR )
4019abscld 11567 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  e.  RR )
4125abscld 11567 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  e.  RR )
4240, 41readdcld 8122 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  e.  RR )
4319, 25abs2dif2d 11584 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
44 1red 8107 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
1  e.  RR )
45 lgsle1 15567 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
4613, 16, 45syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  x.  B
)  /L P ) )  <_  1
)
47 eqid 2206 . . . . . . . . . . . . . 14  |-  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }
4847lgscl2 15564 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
4911, 16, 48syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5047lgscl2 15564 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  P  e.  ZZ )  ->  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5112, 16, 50syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)
5247lgslem3 15554 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }  /\  ( B  /L
P )  e.  {
x  e.  ZZ  | 
( abs `  x
)  <_  1 }
)  ->  ( ( A  /L P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } )
5349, 51, 52syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  x.  ( B  /L
P ) )  e. 
{ x  e.  ZZ  |  ( abs `  x
)  <_  1 }
)
54 fveq2 5589 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( abs `  x
)  =  ( abs `  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )
5554breq1d 4061 . . . . . . . . . . . . 13  |-  ( x  =  ( ( A  /L P )  x.  ( B  /L P ) )  ->  ( ( abs `  x )  <_  1  <->  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1
) )
5655elrab 2933 . . . . . . . . . . . 12  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 } 
<->  ( ( ( A  /L P )  x.  ( B  /L P ) )  e.  ZZ  /\  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) )  <_  1 ) )
5756simprbi 275 . . . . . . . . . . 11  |-  ( ( ( A  /L
P )  x.  ( B  /L P ) )  e.  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  ->  ( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5853, 57syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( A  /L
P )  x.  ( B  /L P ) ) )  <_  1
)
5940, 41, 44, 44, 46, 58le2addd 8656 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
( 1  +  1 ) )
60 df-2 9115 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
6159, 60breqtrrdi 4093 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( A  x.  B
)  /L P ) )  +  ( abs `  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
6235, 42, 37, 43, 61letrd 8216 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  <_ 
2 )
63 prmuz2 12528 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
64 eluzle 9680 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
6514, 63, 643syl 17 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <_  P )
66 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  =/=  2 )
67 2z 9420 . . . . . . . . 9  |-  2  e.  ZZ
68 zltlen 9471 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
6967, 16, 68sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( 2  <  P  <->  ( 2  <_  P  /\  P  =/=  2 ) ) )
7065, 66, 69mpbir2and 947 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
2  <  P )
7135, 37, 39, 62, 70lelttrd 8217 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  < 
P )
72 modqid 10516 . . . . . 6  |-  ( ( ( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  e.  QQ  /\  P  e.  QQ )  /\  (
0  <_  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  /\  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  <  P ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )  mod  P
)  =  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) ) )
7330, 33, 34, 71, 72syl22anc 1251 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  ( abs `  ( ( ( A  x.  B
)  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) )
7411zcnd 9516 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  A  e.  CC )
7512zcnd 9516 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  B  e.  CC )
76 eldifsn 3766 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
7714, 66, 76sylanbrc 417 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  e.  ( Prime  \  { 2 } ) )
78 oddprm 12657 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
7977, 78syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
8079nnnn0d 9368 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
8174, 75, 80mulexpd 10855 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( A ^ ( ( P  -  1 )  /  2 ) )  x.  ( B ^
( ( P  - 
1 )  /  2
) ) ) )
82 zexpcl 10721 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8311, 80, 82syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8483zcnd 9516 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  CC )
85 zexpcl 10721 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8612, 80, 85syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
8786zcnd 9516 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  CC )
8884, 87mulcomd 8114 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) ) )
8981, 88eqtrd 2239 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  =  ( ( B ^ ( ( P  -  1 )  /  2 ) )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) ) )
9089oveq1d 5972 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B ) ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( ( ( B ^ (
( P  -  1 )  /  2 ) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
91 lgsvalmod 15571 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( A  x.  B
)  /L P )  mod  P )  =  ( ( ( A  x.  B ) ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
9213, 77, 91syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  x.  B ) ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
93 zq 9767 . . . . . . . . . . . 12  |-  ( ( A  /L P )  e.  ZZ  ->  ( A  /L P )  e.  QQ )
9421, 93syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A  /L
P )  e.  QQ )
95 zq 9767 . . . . . . . . . . . 12  |-  ( ( A ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
9683, 95syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( A ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
9738nngt0d 9100 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
0  <  P )
98 lgsvalmod 15571 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  mod  P )  =  ( ( A ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
9911, 77, 98syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  /L P )  mod 
P )  =  ( ( A ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
10094, 96, 23, 33, 97, 99modqmul1 10544 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P ) )
10123zcnd 9516 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  CC )
10284, 101mulcomd 8114 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A ^
( ( P  - 
1 )  /  2
) )  x.  ( B  /L P ) )  =  ( ( B  /L P )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) ) )
103102oveq1d 5972 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  x.  ( B  /L
P ) )  mod 
P )  =  ( ( ( B  /L P )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
104 zq 9767 . . . . . . . . . . . 12  |-  ( ( B  /L P )  e.  ZZ  ->  ( B  /L P )  e.  QQ )
10523, 104syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B  /L
P )  e.  QQ )
106 zq 9767 . . . . . . . . . . . 12  |-  ( ( B ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  ->  ( B ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
10786, 106syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( B ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
108 lgsvalmod 15571 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( B  /L P )  mod  P )  =  ( ( B ^
( ( P  - 
1 )  /  2
) )  mod  P
) )
10912, 77, 108syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( B  /L P )  mod 
P )  =  ( ( B ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
110105, 107, 83, 33, 97, 109modqmul1 10544 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( B  /L P )  x.  ( A ^
( ( P  - 
1 )  /  2
) ) )  mod 
P )  =  ( ( ( B ^
( ( P  - 
1 )  /  2
) )  x.  ( A ^ ( ( P  -  1 )  / 
2 ) ) )  mod  P ) )
111100, 103, 1103eqtrd 2243 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  =  ( ( ( B ^ ( ( P  -  1 )  / 
2 ) )  x.  ( A ^ (
( P  -  1 )  /  2 ) ) )  mod  P
) )
11290, 92, 1113eqtr4d 2249 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P ) )
113 moddvds 12185 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( ( A  x.  B )  /L
P )  e.  ZZ  /\  ( ( A  /L P )  x.  ( B  /L
P ) )  e.  ZZ )  ->  (
( ( ( A  x.  B )  /L P )  mod 
P )  =  ( ( ( A  /L P )  x.  ( B  /L
P ) )  mod 
P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
11438, 18, 24, 113syl3anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( ( A  x.  B )  /L P )  mod  P )  =  ( ( ( A  /L P )  x.  ( B  /L P ) )  mod  P )  <->  P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
115112, 114mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) )
116 dvdsabsb 12196 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  e.  ZZ )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
11716, 27, 116syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( P  ||  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) )  <->  P  ||  ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L P ) ) ) ) ) )
118115, 117mpbid 147 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  ->  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )
119 dvdsmod0 12179 . . . . . 6  |-  ( ( P  e.  NN  /\  P  ||  ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) ) )  ->  ( ( abs `  ( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) ) )  mod  P )  =  0 )
12038, 118, 119syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  mod 
P )  =  0 )
12173, 120eqtr3d 2241 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( abs `  (
( ( A  x.  B )  /L
P )  -  (
( A  /L
P )  x.  ( B  /L P ) ) ) )  =  0 )
12226, 121abs00d 11572 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( ( A  x.  B )  /L P )  -  ( ( A  /L P )  x.  ( B  /L
P ) ) )  =  0 )
12319, 25, 122subeq0d 8411 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  /\  P  =/=  2 )  -> 
( ( A  x.  B )  /L
P )  =  ( ( A  /L
P )  x.  ( B  /L P ) ) )
124153ad2ant3 1023 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  P  e.  ZZ )
12567a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  2  e.  ZZ )
126 zdceq 9468 . . . 4  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  -> DECID  P  =  2 )
127124, 125, 126syl2anc 411 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  -> DECID  P  =  2
)
128 dcne 2388 . . 3  |-  (DECID  P  =  2  <->  ( P  =  2  \/  P  =/=  2 ) )
129127, 128sylib 122 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  ( P  =  2  \/  P  =/=  2 ) )
13010, 123, 129mpjaodan 800 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  (
( A  x.  B
)  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   {crab 2489    \ cdif 3167   {csn 3638   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   RRcr 7944   0cc0 7945   1c1 7946    + caddc 7948    x. cmul 7950    < clt 8127    <_ cle 8128    - cmin 8263    / cdiv 8765   NNcn 9056   2c2 9107   NN0cn0 9315   ZZcz 9392   ZZ>=cuz 9668   QQcq 9760    mod cmo 10489   ^cexp 10705   abscabs 11383    || cdvds 12173   Primecprime 12504    /Lclgs 15549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-2o 6516  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937  df-dvds 12174  df-gcd 12350  df-prm 12505  df-phi 12608  df-pc 12683  df-lgs 15550
This theorem is referenced by:  lgsdir  15587
  Copyright terms: Public domain W3C validator