Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid1i | Unicode version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 |
Ref | Expression |
---|---|
mulid1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 | |
2 | mulid1 7917 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 c1 7775 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-mulcom 7875 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: rimul 8504 muleqadd 8586 1t1e1 9030 2t1e2 9031 3t1e3 9033 halfpm6th 9098 iap0 9101 9p1e10 9345 numltc 9368 numsucc 9382 dec10p 9385 numadd 9389 numaddc 9390 11multnc 9410 4t3lem 9439 5t2e10 9442 9t11e99 9472 rei 10863 imi 10864 cji 10866 0.999... 11484 efival 11695 ef01bndlem 11719 3lcm2e6 12114 dveflem 13481 efhalfpi 13514 |
Copyright terms: Public domain | W3C validator |