Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid1i | Unicode version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 |
Ref | Expression |
---|---|
mulid1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 | |
2 | mulid1 7904 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 (class class class)co 5850 cc 7759 c1 7762 cmul 7766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7853 ax-1cn 7854 ax-icn 7856 ax-addcl 7857 ax-mulcl 7859 ax-mulcom 7862 ax-mulass 7864 ax-distr 7865 ax-1rid 7868 ax-cnre 7872 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5853 |
This theorem is referenced by: rimul 8491 muleqadd 8573 1t1e1 9017 2t1e2 9018 3t1e3 9020 halfpm6th 9085 iap0 9088 9p1e10 9332 numltc 9355 numsucc 9369 dec10p 9372 numadd 9376 numaddc 9377 11multnc 9397 4t3lem 9426 5t2e10 9429 9t11e99 9459 rei 10850 imi 10851 cji 10853 0.999... 11471 efival 11682 ef01bndlem 11706 3lcm2e6 12101 dveflem 13440 efhalfpi 13473 |
Copyright terms: Public domain | W3C validator |