ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulid1i Unicode version

Theorem mulid1i 7775
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
Hypothesis
Ref Expression
axi.1  |-  A  e.  CC
Assertion
Ref Expression
mulid1i  |-  ( A  x.  1 )  =  A

Proof of Theorem mulid1i
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 mulid1 7770 . 2  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
31, 2ax-mp 5 1  |-  ( A  x.  1 )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7625   1c1 7628    x. cmul 7632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7719  ax-1cn 7720  ax-icn 7722  ax-addcl 7723  ax-mulcl 7725  ax-mulcom 7728  ax-mulass 7730  ax-distr 7731  ax-1rid 7734  ax-cnre 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  rimul  8354  muleqadd  8436  1t1e1  8879  2t1e2  8880  3t1e3  8882  halfpm6th  8947  iap0  8950  9p1e10  9191  numltc  9214  numsucc  9228  dec10p  9231  numadd  9235  numaddc  9236  11multnc  9256  4t3lem  9285  5t2e10  9288  9t11e99  9318  rei  10678  imi  10679  cji  10681  0.999...  11297  efival  11446  ef01bndlem  11470  3lcm2e6  11845  dveflem  12865  efhalfpi  12890
  Copyright terms: Public domain W3C validator