Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axsuploc | Unicode version |
Description: An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7895 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.) |
Ref | Expression |
---|---|
axsuploc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3142 | . . . . . . . . . 10 | |
2 | ltxrlt 7985 | . . . . . . . . . 10 | |
3 | 1, 2 | sylan 281 | . . . . . . . . 9 |
4 | 3 | an32s 563 | . . . . . . . 8 |
5 | 4 | ralbidva 2466 | . . . . . . 7 |
6 | 5 | rexbidva 2467 | . . . . . 6 |
7 | simplr 525 | . . . . . . . . . 10 | |
8 | simpr 109 | . . . . . . . . . 10 | |
9 | ltxrlt 7985 | . . . . . . . . . 10 | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . . . . 9 |
11 | simpllr 529 | . . . . . . . . . . . 12 | |
12 | ssel2 3142 | . . . . . . . . . . . . . 14 | |
13 | 12 | adantlr 474 | . . . . . . . . . . . . 13 |
14 | 13 | adantlr 474 | . . . . . . . . . . . 12 |
15 | ltxrlt 7985 | . . . . . . . . . . . 12 | |
16 | 11, 14, 15 | syl2anc 409 | . . . . . . . . . . 11 |
17 | 16 | rexbidva 2467 | . . . . . . . . . 10 |
18 | simplr 525 | . . . . . . . . . . . 12 | |
19 | ltxrlt 7985 | . . . . . . . . . . . 12 | |
20 | 14, 18, 19 | syl2anc 409 | . . . . . . . . . . 11 |
21 | 20 | ralbidva 2466 | . . . . . . . . . 10 |
22 | 17, 21 | orbi12d 788 | . . . . . . . . 9 |
23 | 10, 22 | imbi12d 233 | . . . . . . . 8 |
24 | 23 | ralbidva 2466 | . . . . . . 7 |
25 | 24 | ralbidva 2466 | . . . . . 6 |
26 | 6, 25 | anbi12d 470 | . . . . 5 |
27 | 26 | adantr 274 | . . . 4 |
28 | 27 | pm5.32i 451 | . . 3 |
29 | ax-pre-suploc 7895 | . . 3 | |
30 | 28, 29 | sylbi 120 | . 2 |
31 | simplr 525 | . . . . . . . . 9 | |
32 | 1 | adantlr 474 | . . . . . . . . 9 |
33 | 31, 32, 9 | syl2anc 409 | . . . . . . . 8 |
34 | 33 | bicomd 140 | . . . . . . 7 |
35 | 34 | notbid 662 | . . . . . 6 |
36 | 35 | ralbidva 2466 | . . . . 5 |
37 | 8, 7, 2 | syl2anc 409 | . . . . . . . 8 |
38 | 37 | bicomd 140 | . . . . . . 7 |
39 | ltxrlt 7985 | . . . . . . . . . 10 | |
40 | 18, 14, 39 | syl2anc 409 | . . . . . . . . 9 |
41 | 40 | bicomd 140 | . . . . . . . 8 |
42 | 41 | rexbidva 2467 | . . . . . . 7 |
43 | 38, 42 | imbi12d 233 | . . . . . 6 |
44 | 43 | ralbidva 2466 | . . . . 5 |
45 | 36, 44 | anbi12d 470 | . . . 4 |
46 | 45 | rexbidva 2467 | . . 3 |
47 | 46 | ad2antrr 485 | . 2 |
48 | 30, 47 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wex 1485 wcel 2141 wral 2448 wrex 2449 wss 3121 class class class wbr 3989 cr 7773 cltrr 7778 clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-suploc 7895 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: dedekindeulemlub 13392 suplociccreex 13396 |
Copyright terms: Public domain | W3C validator |