| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axsuploc | Unicode version | ||
| Description: An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 8045 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.) |
| Ref | Expression |
|---|---|
| axsuploc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3187 |
. . . . . . . . . 10
| |
| 2 | ltxrlt 8137 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | sylan 283 |
. . . . . . . . 9
|
| 4 | 3 | an32s 568 |
. . . . . . . 8
|
| 5 | 4 | ralbidva 2501 |
. . . . . . 7
|
| 6 | 5 | rexbidva 2502 |
. . . . . 6
|
| 7 | simplr 528 |
. . . . . . . . . 10
| |
| 8 | simpr 110 |
. . . . . . . . . 10
| |
| 9 | ltxrlt 8137 |
. . . . . . . . . 10
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . . 9
|
| 11 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 12 | ssel2 3187 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | adantlr 477 |
. . . . . . . . . . . . 13
|
| 14 | 13 | adantlr 477 |
. . . . . . . . . . . 12
|
| 15 | ltxrlt 8137 |
. . . . . . . . . . . 12
| |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . . . . . . 11
|
| 17 | 16 | rexbidva 2502 |
. . . . . . . . . 10
|
| 18 | simplr 528 |
. . . . . . . . . . . 12
| |
| 19 | ltxrlt 8137 |
. . . . . . . . . . . 12
| |
| 20 | 14, 18, 19 | syl2anc 411 |
. . . . . . . . . . 11
|
| 21 | 20 | ralbidva 2501 |
. . . . . . . . . 10
|
| 22 | 17, 21 | orbi12d 794 |
. . . . . . . . 9
|
| 23 | 10, 22 | imbi12d 234 |
. . . . . . . 8
|
| 24 | 23 | ralbidva 2501 |
. . . . . . 7
|
| 25 | 24 | ralbidva 2501 |
. . . . . 6
|
| 26 | 6, 25 | anbi12d 473 |
. . . . 5
|
| 27 | 26 | adantr 276 |
. . . 4
|
| 28 | 27 | pm5.32i 454 |
. . 3
|
| 29 | ax-pre-suploc 8045 |
. . 3
| |
| 30 | 28, 29 | sylbi 121 |
. 2
|
| 31 | simplr 528 |
. . . . . . . . 9
| |
| 32 | 1 | adantlr 477 |
. . . . . . . . 9
|
| 33 | 31, 32, 9 | syl2anc 411 |
. . . . . . . 8
|
| 34 | 33 | bicomd 141 |
. . . . . . 7
|
| 35 | 34 | notbid 668 |
. . . . . 6
|
| 36 | 35 | ralbidva 2501 |
. . . . 5
|
| 37 | 8, 7, 2 | syl2anc 411 |
. . . . . . . 8
|
| 38 | 37 | bicomd 141 |
. . . . . . 7
|
| 39 | ltxrlt 8137 |
. . . . . . . . . 10
| |
| 40 | 18, 14, 39 | syl2anc 411 |
. . . . . . . . 9
|
| 41 | 40 | bicomd 141 |
. . . . . . . 8
|
| 42 | 41 | rexbidva 2502 |
. . . . . . 7
|
| 43 | 38, 42 | imbi12d 234 |
. . . . . 6
|
| 44 | 43 | ralbidva 2501 |
. . . . 5
|
| 45 | 36, 44 | anbi12d 473 |
. . . 4
|
| 46 | 45 | rexbidva 2502 |
. . 3
|
| 47 | 46 | ad2antrr 488 |
. 2
|
| 48 | 30, 47 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-suploc 8045 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-pnf 8108 df-mnf 8109 df-ltxr 8111 |
| This theorem is referenced by: dedekindeulemlub 15034 suplociccreex 15038 |
| Copyright terms: Public domain | W3C validator |