Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axsuploc | Unicode version |
Description: An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7907 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.) |
Ref | Expression |
---|---|
axsuploc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3148 | . . . . . . . . . 10 | |
2 | ltxrlt 7997 | . . . . . . . . . 10 | |
3 | 1, 2 | sylan 283 | . . . . . . . . 9 |
4 | 3 | an32s 568 | . . . . . . . 8 |
5 | 4 | ralbidva 2471 | . . . . . . 7 |
6 | 5 | rexbidva 2472 | . . . . . 6 |
7 | simplr 528 | . . . . . . . . . 10 | |
8 | simpr 110 | . . . . . . . . . 10 | |
9 | ltxrlt 7997 | . . . . . . . . . 10 | |
10 | 7, 8, 9 | syl2anc 411 | . . . . . . . . 9 |
11 | simpllr 534 | . . . . . . . . . . . 12 | |
12 | ssel2 3148 | . . . . . . . . . . . . . 14 | |
13 | 12 | adantlr 477 | . . . . . . . . . . . . 13 |
14 | 13 | adantlr 477 | . . . . . . . . . . . 12 |
15 | ltxrlt 7997 | . . . . . . . . . . . 12 | |
16 | 11, 14, 15 | syl2anc 411 | . . . . . . . . . . 11 |
17 | 16 | rexbidva 2472 | . . . . . . . . . 10 |
18 | simplr 528 | . . . . . . . . . . . 12 | |
19 | ltxrlt 7997 | . . . . . . . . . . . 12 | |
20 | 14, 18, 19 | syl2anc 411 | . . . . . . . . . . 11 |
21 | 20 | ralbidva 2471 | . . . . . . . . . 10 |
22 | 17, 21 | orbi12d 793 | . . . . . . . . 9 |
23 | 10, 22 | imbi12d 234 | . . . . . . . 8 |
24 | 23 | ralbidva 2471 | . . . . . . 7 |
25 | 24 | ralbidva 2471 | . . . . . 6 |
26 | 6, 25 | anbi12d 473 | . . . . 5 |
27 | 26 | adantr 276 | . . . 4 |
28 | 27 | pm5.32i 454 | . . 3 |
29 | ax-pre-suploc 7907 | . . 3 | |
30 | 28, 29 | sylbi 121 | . 2 |
31 | simplr 528 | . . . . . . . . 9 | |
32 | 1 | adantlr 477 | . . . . . . . . 9 |
33 | 31, 32, 9 | syl2anc 411 | . . . . . . . 8 |
34 | 33 | bicomd 141 | . . . . . . 7 |
35 | 34 | notbid 667 | . . . . . 6 |
36 | 35 | ralbidva 2471 | . . . . 5 |
37 | 8, 7, 2 | syl2anc 411 | . . . . . . . 8 |
38 | 37 | bicomd 141 | . . . . . . 7 |
39 | ltxrlt 7997 | . . . . . . . . . 10 | |
40 | 18, 14, 39 | syl2anc 411 | . . . . . . . . 9 |
41 | 40 | bicomd 141 | . . . . . . . 8 |
42 | 41 | rexbidva 2472 | . . . . . . 7 |
43 | 38, 42 | imbi12d 234 | . . . . . 6 |
44 | 43 | ralbidva 2471 | . . . . 5 |
45 | 36, 44 | anbi12d 473 | . . . 4 |
46 | 45 | rexbidva 2472 | . . 3 |
47 | 46 | ad2antrr 488 | . 2 |
48 | 30, 47 | mpbid 147 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 wex 1490 wcel 2146 wral 2453 wrex 2454 wss 3127 class class class wbr 3998 cr 7785 cltrr 7790 clt 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-suploc 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-pnf 7968 df-mnf 7969 df-ltxr 7971 |
This theorem is referenced by: dedekindeulemlub 13669 suplociccreex 13673 |
Copyright terms: Public domain | W3C validator |