| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindicclemuub | Unicode version | ||
| Description: Lemma for dedekindicc 15307. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| Ref | Expression |
|---|---|
| dedekindicc.a |
|
| dedekindicc.b |
|
| dedekindicc.lss |
|
| dedekindicc.uss |
|
| dedekindicc.lm |
|
| dedekindicc.um |
|
| dedekindicc.lr |
|
| dedekindicc.ur |
|
| dedekindicc.disj |
|
| dedekindicc.loc |
|
| dedekindicclemuub.u |
|
| Ref | Expression |
|---|---|
| dedekindicclemuub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindicclemuub.u |
. . 3
| |
| 2 | eleq1 2292 |
. . . . 5
| |
| 3 | breq2 4087 |
. . . . . 6
| |
| 4 | 3 | rexbidv 2531 |
. . . . 5
|
| 5 | 2, 4 | bibi12d 235 |
. . . 4
|
| 6 | dedekindicc.ur |
. . . 4
| |
| 7 | dedekindicc.uss |
. . . . 5
| |
| 8 | 7, 1 | sseldd 3225 |
. . . 4
|
| 9 | 5, 6, 8 | rspcdva 2912 |
. . 3
|
| 10 | 1, 9 | mpbid 147 |
. 2
|
| 11 | dedekindicc.a |
. . . . . . 7
| |
| 12 | dedekindicc.b |
. . . . . . 7
| |
| 13 | iccssre 10151 |
. . . . . . 7
| |
| 14 | 11, 12, 13 | syl2anc 411 |
. . . . . 6
|
| 15 | 14 | ad2antrr 488 |
. . . . 5
|
| 16 | dedekindicc.lss |
. . . . . . 7
| |
| 17 | 16 | ad2antrr 488 |
. . . . . 6
|
| 18 | simpr 110 |
. . . . . 6
| |
| 19 | 17, 18 | sseldd 3225 |
. . . . 5
|
| 20 | 15, 19 | sseldd 3225 |
. . . 4
|
| 21 | 7 | ad2antrr 488 |
. . . . . 6
|
| 22 | simplrl 535 |
. . . . . 6
| |
| 23 | 21, 22 | sseldd 3225 |
. . . . 5
|
| 24 | 15, 23 | sseldd 3225 |
. . . 4
|
| 25 | 14, 8 | sseldd 3225 |
. . . . 5
|
| 26 | 25 | ad2antrr 488 |
. . . 4
|
| 27 | breq1 4086 |
. . . . . . . . . 10
| |
| 28 | 27 | rspcev 2907 |
. . . . . . . . 9
|
| 29 | 22, 28 | sylan 283 |
. . . . . . . 8
|
| 30 | 27 | cbvrexv 2766 |
. . . . . . . 8
|
| 31 | 29, 30 | sylib 122 |
. . . . . . 7
|
| 32 | eleq1 2292 |
. . . . . . . . 9
| |
| 33 | breq2 4087 |
. . . . . . . . . 10
| |
| 34 | 33 | rexbidv 2531 |
. . . . . . . . 9
|
| 35 | 32, 34 | bibi12d 235 |
. . . . . . . 8
|
| 36 | 6 | ad3antrrr 492 |
. . . . . . . 8
|
| 37 | 19 | adantr 276 |
. . . . . . . 8
|
| 38 | 35, 36, 37 | rspcdva 2912 |
. . . . . . 7
|
| 39 | 31, 38 | mpbird 167 |
. . . . . 6
|
| 40 | simplll 533 |
. . . . . . 7
| |
| 41 | 18 | adantr 276 |
. . . . . . 7
|
| 42 | dedekindicc.disj |
. . . . . . . . 9
| |
| 43 | disj 3540 |
. . . . . . . . 9
| |
| 44 | 42, 43 | sylib 122 |
. . . . . . . 8
|
| 45 | 44 | r19.21bi 2618 |
. . . . . . 7
|
| 46 | 40, 41, 45 | syl2anc 411 |
. . . . . 6
|
| 47 | 39, 46 | pm2.65da 665 |
. . . . 5
|
| 48 | 20, 24, 47 | nltled 8267 |
. . . 4
|
| 49 | simplrr 536 |
. . . 4
| |
| 50 | 20, 24, 26, 48, 49 | lelttrd 8271 |
. . 3
|
| 51 | 50 | ralrimiva 2603 |
. 2
|
| 52 | 10, 51 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-icc 10091 |
| This theorem is referenced by: dedekindicclemub 15301 dedekindicclemloc 15302 |
| Copyright terms: Public domain | W3C validator |