ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemuub Unicode version

Theorem dedekindicclemuub 15300
Description: Lemma for dedekindicc 15307. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
dedekindicclemuub.u  |-  ( ph  ->  C  e.  U )
Assertion
Ref Expression
dedekindicclemuub  |-  ( ph  ->  A. z  e.  L  z  <  C )
Distinct variable groups:    A, r    B, r    C, q, r, z    L, q, z    U, q, z, r    ph, q,
z
Allowed substitution hints:    ph( r)    A( z,
q)    B( z, q)    L( r)

Proof of Theorem dedekindicclemuub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindicclemuub.u . . 3  |-  ( ph  ->  C  e.  U )
2 eleq1 2292 . . . . 5  |-  ( r  =  C  ->  (
r  e.  U  <->  C  e.  U ) )
3 breq2 4087 . . . . . 6  |-  ( r  =  C  ->  (
q  <  r  <->  q  <  C ) )
43rexbidv 2531 . . . . 5  |-  ( r  =  C  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  C ) )
52, 4bibi12d 235 . . . 4  |-  ( r  =  C  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( C  e.  U  <->  E. q  e.  U  q  <  C ) ) )
6 dedekindicc.ur . . . 4  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
7 dedekindicc.uss . . . . 5  |-  ( ph  ->  U  C_  ( A [,] B ) )
87, 1sseldd 3225 . . . 4  |-  ( ph  ->  C  e.  ( A [,] B ) )
95, 6, 8rspcdva 2912 . . 3  |-  ( ph  ->  ( C  e.  U  <->  E. q  e.  U  q  <  C ) )
101, 9mpbid 147 . 2  |-  ( ph  ->  E. q  e.  U  q  <  C )
11 dedekindicc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
12 dedekindicc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
13 iccssre 10151 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
1411, 12, 13syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
1514ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  ( A [,] B )  C_  RR )
16 dedekindicc.lss . . . . . . 7  |-  ( ph  ->  L  C_  ( A [,] B ) )
1716ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  L  C_  ( A [,] B ) )
18 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  L )
1917, 18sseldd 3225 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  ( A [,] B ) )
2015, 19sseldd 3225 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  RR )
217ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  U  C_  ( A [,] B ) )
22 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  U )
2321, 22sseldd 3225 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  ( A [,] B ) )
2415, 23sseldd 3225 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  RR )
2514, 8sseldd 3225 . . . . 5  |-  ( ph  ->  C  e.  RR )
2625ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  C  e.  RR )
27 breq1 4086 . . . . . . . . . 10  |-  ( a  =  q  ->  (
a  <  z  <->  q  <  z ) )
2827rspcev 2907 . . . . . . . . 9  |-  ( ( q  e.  U  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
2922, 28sylan 283 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
3027cbvrexv 2766 . . . . . . . 8  |-  ( E. a  e.  U  a  <  z  <->  E. q  e.  U  q  <  z )
3129, 30sylib 122 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. q  e.  U  q  <  z )
32 eleq1 2292 . . . . . . . . 9  |-  ( r  =  z  ->  (
r  e.  U  <->  z  e.  U ) )
33 breq2 4087 . . . . . . . . . 10  |-  ( r  =  z  ->  (
q  <  r  <->  q  <  z ) )
3433rexbidv 2531 . . . . . . . . 9  |-  ( r  =  z  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  z ) )
3532, 34bibi12d 235 . . . . . . . 8  |-  ( r  =  z  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( z  e.  U  <->  E. q  e.  U  q  <  z ) ) )
366ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  A. r  e.  ( A [,] B
) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
3719adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  ( A [,] B
) )
3835, 36, 37rspcdva 2912 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  (
z  e.  U  <->  E. q  e.  U  q  <  z ) )
3931, 38mpbird 167 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  U )
40 simplll 533 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  ph )
4118adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  L )
42 dedekindicc.disj . . . . . . . . 9  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
43 disj 3540 . . . . . . . . 9  |-  ( ( L  i^i  U )  =  (/)  <->  A. z  e.  L  -.  z  e.  U
)
4442, 43sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  L  -.  z  e.  U
)
4544r19.21bi 2618 . . . . . . 7  |-  ( (
ph  /\  z  e.  L )  ->  -.  z  e.  U )
4640, 41, 45syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  -.  z  e.  U )
4739, 46pm2.65da 665 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  -.  q  <  z )
4820, 24, 47nltled 8267 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  <_  q )
49 simplrr 536 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  <  C )
5020, 24, 26, 48, 49lelttrd 8271 . . 3  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  <  C )
5150ralrimiva 2603 . 2  |-  ( (
ph  /\  ( q  e.  U  /\  q  <  C ) )  ->  A. z  e.  L  z  <  C )
5210, 51rexlimddv 2653 1  |-  ( ph  ->  A. z  e.  L  z  <  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   (/)c0 3491   class class class wbr 4083  (class class class)co 6001   RRcr 7998    < clt 8181   [,]cicc 10087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-icc 10091
This theorem is referenced by:  dedekindicclemub  15301  dedekindicclemloc  15302
  Copyright terms: Public domain W3C validator