ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemuub Unicode version

Theorem dedekindicclemuub 14780
Description: Lemma for dedekindicc 14787. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
dedekindicclemuub.u  |-  ( ph  ->  C  e.  U )
Assertion
Ref Expression
dedekindicclemuub  |-  ( ph  ->  A. z  e.  L  z  <  C )
Distinct variable groups:    A, r    B, r    C, q, r, z    L, q, z    U, q, z, r    ph, q,
z
Allowed substitution hints:    ph( r)    A( z,
q)    B( z, q)    L( r)

Proof of Theorem dedekindicclemuub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindicclemuub.u . . 3  |-  ( ph  ->  C  e.  U )
2 eleq1 2256 . . . . 5  |-  ( r  =  C  ->  (
r  e.  U  <->  C  e.  U ) )
3 breq2 4033 . . . . . 6  |-  ( r  =  C  ->  (
q  <  r  <->  q  <  C ) )
43rexbidv 2495 . . . . 5  |-  ( r  =  C  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  C ) )
52, 4bibi12d 235 . . . 4  |-  ( r  =  C  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( C  e.  U  <->  E. q  e.  U  q  <  C ) ) )
6 dedekindicc.ur . . . 4  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
7 dedekindicc.uss . . . . 5  |-  ( ph  ->  U  C_  ( A [,] B ) )
87, 1sseldd 3180 . . . 4  |-  ( ph  ->  C  e.  ( A [,] B ) )
95, 6, 8rspcdva 2869 . . 3  |-  ( ph  ->  ( C  e.  U  <->  E. q  e.  U  q  <  C ) )
101, 9mpbid 147 . 2  |-  ( ph  ->  E. q  e.  U  q  <  C )
11 dedekindicc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
12 dedekindicc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
13 iccssre 10021 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
1411, 12, 13syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
1514ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  ( A [,] B )  C_  RR )
16 dedekindicc.lss . . . . . . 7  |-  ( ph  ->  L  C_  ( A [,] B ) )
1716ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  L  C_  ( A [,] B ) )
18 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  L )
1917, 18sseldd 3180 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  ( A [,] B ) )
2015, 19sseldd 3180 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  RR )
217ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  U  C_  ( A [,] B ) )
22 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  U )
2321, 22sseldd 3180 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  ( A [,] B ) )
2415, 23sseldd 3180 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  RR )
2514, 8sseldd 3180 . . . . 5  |-  ( ph  ->  C  e.  RR )
2625ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  C  e.  RR )
27 breq1 4032 . . . . . . . . . 10  |-  ( a  =  q  ->  (
a  <  z  <->  q  <  z ) )
2827rspcev 2864 . . . . . . . . 9  |-  ( ( q  e.  U  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
2922, 28sylan 283 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
3027cbvrexv 2727 . . . . . . . 8  |-  ( E. a  e.  U  a  <  z  <->  E. q  e.  U  q  <  z )
3129, 30sylib 122 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. q  e.  U  q  <  z )
32 eleq1 2256 . . . . . . . . 9  |-  ( r  =  z  ->  (
r  e.  U  <->  z  e.  U ) )
33 breq2 4033 . . . . . . . . . 10  |-  ( r  =  z  ->  (
q  <  r  <->  q  <  z ) )
3433rexbidv 2495 . . . . . . . . 9  |-  ( r  =  z  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  z ) )
3532, 34bibi12d 235 . . . . . . . 8  |-  ( r  =  z  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( z  e.  U  <->  E. q  e.  U  q  <  z ) ) )
366ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  A. r  e.  ( A [,] B
) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
3719adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  ( A [,] B
) )
3835, 36, 37rspcdva 2869 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  (
z  e.  U  <->  E. q  e.  U  q  <  z ) )
3931, 38mpbird 167 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  U )
40 simplll 533 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  ph )
4118adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  L )
42 dedekindicc.disj . . . . . . . . 9  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
43 disj 3495 . . . . . . . . 9  |-  ( ( L  i^i  U )  =  (/)  <->  A. z  e.  L  -.  z  e.  U
)
4442, 43sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  L  -.  z  e.  U
)
4544r19.21bi 2582 . . . . . . 7  |-  ( (
ph  /\  z  e.  L )  ->  -.  z  e.  U )
4640, 41, 45syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  -.  z  e.  U )
4739, 46pm2.65da 662 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  -.  q  <  z )
4820, 24, 47nltled 8140 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  <_  q )
49 simplrr 536 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  <  C )
5020, 24, 26, 48, 49lelttrd 8144 . . 3  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  <  C )
5150ralrimiva 2567 . 2  |-  ( (
ph  /\  ( q  e.  U  /\  q  <  C ) )  ->  A. z  e.  L  z  <  C )
5210, 51rexlimddv 2616 1  |-  ( ph  ->  A. z  e.  L  z  <  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    i^i cin 3152    C_ wss 3153   (/)c0 3446   class class class wbr 4029  (class class class)co 5918   RRcr 7871    < clt 8054   [,]cicc 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-icc 9961
This theorem is referenced by:  dedekindicclemub  14781  dedekindicclemloc  14782
  Copyright terms: Public domain W3C validator