| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dedekindicclemuub | Unicode version | ||
| Description: Lemma for dedekindicc 14869. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.) | 
| Ref | Expression | 
|---|---|
| dedekindicc.a | 
 | 
| dedekindicc.b | 
 | 
| dedekindicc.lss | 
 | 
| dedekindicc.uss | 
 | 
| dedekindicc.lm | 
 | 
| dedekindicc.um | 
 | 
| dedekindicc.lr | 
 | 
| dedekindicc.ur | 
 | 
| dedekindicc.disj | 
 | 
| dedekindicc.loc | 
 | 
| dedekindicclemuub.u | 
 | 
| Ref | Expression | 
|---|---|
| dedekindicclemuub | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dedekindicclemuub.u | 
. . 3
 | |
| 2 | eleq1 2259 | 
. . . . 5
 | |
| 3 | breq2 4037 | 
. . . . . 6
 | |
| 4 | 3 | rexbidv 2498 | 
. . . . 5
 | 
| 5 | 2, 4 | bibi12d 235 | 
. . . 4
 | 
| 6 | dedekindicc.ur | 
. . . 4
 | |
| 7 | dedekindicc.uss | 
. . . . 5
 | |
| 8 | 7, 1 | sseldd 3184 | 
. . . 4
 | 
| 9 | 5, 6, 8 | rspcdva 2873 | 
. . 3
 | 
| 10 | 1, 9 | mpbid 147 | 
. 2
 | 
| 11 | dedekindicc.a | 
. . . . . . 7
 | |
| 12 | dedekindicc.b | 
. . . . . . 7
 | |
| 13 | iccssre 10030 | 
. . . . . . 7
 | |
| 14 | 11, 12, 13 | syl2anc 411 | 
. . . . . 6
 | 
| 15 | 14 | ad2antrr 488 | 
. . . . 5
 | 
| 16 | dedekindicc.lss | 
. . . . . . 7
 | |
| 17 | 16 | ad2antrr 488 | 
. . . . . 6
 | 
| 18 | simpr 110 | 
. . . . . 6
 | |
| 19 | 17, 18 | sseldd 3184 | 
. . . . 5
 | 
| 20 | 15, 19 | sseldd 3184 | 
. . . 4
 | 
| 21 | 7 | ad2antrr 488 | 
. . . . . 6
 | 
| 22 | simplrl 535 | 
. . . . . 6
 | |
| 23 | 21, 22 | sseldd 3184 | 
. . . . 5
 | 
| 24 | 15, 23 | sseldd 3184 | 
. . . 4
 | 
| 25 | 14, 8 | sseldd 3184 | 
. . . . 5
 | 
| 26 | 25 | ad2antrr 488 | 
. . . 4
 | 
| 27 | breq1 4036 | 
. . . . . . . . . 10
 | |
| 28 | 27 | rspcev 2868 | 
. . . . . . . . 9
 | 
| 29 | 22, 28 | sylan 283 | 
. . . . . . . 8
 | 
| 30 | 27 | cbvrexv 2730 | 
. . . . . . . 8
 | 
| 31 | 29, 30 | sylib 122 | 
. . . . . . 7
 | 
| 32 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 33 | breq2 4037 | 
. . . . . . . . . 10
 | |
| 34 | 33 | rexbidv 2498 | 
. . . . . . . . 9
 | 
| 35 | 32, 34 | bibi12d 235 | 
. . . . . . . 8
 | 
| 36 | 6 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 37 | 19 | adantr 276 | 
. . . . . . . 8
 | 
| 38 | 35, 36, 37 | rspcdva 2873 | 
. . . . . . 7
 | 
| 39 | 31, 38 | mpbird 167 | 
. . . . . 6
 | 
| 40 | simplll 533 | 
. . . . . . 7
 | |
| 41 | 18 | adantr 276 | 
. . . . . . 7
 | 
| 42 | dedekindicc.disj | 
. . . . . . . . 9
 | |
| 43 | disj 3499 | 
. . . . . . . . 9
 | |
| 44 | 42, 43 | sylib 122 | 
. . . . . . . 8
 | 
| 45 | 44 | r19.21bi 2585 | 
. . . . . . 7
 | 
| 46 | 40, 41, 45 | syl2anc 411 | 
. . . . . 6
 | 
| 47 | 39, 46 | pm2.65da 662 | 
. . . . 5
 | 
| 48 | 20, 24, 47 | nltled 8147 | 
. . . 4
 | 
| 49 | simplrr 536 | 
. . . 4
 | |
| 50 | 20, 24, 26, 48, 49 | lelttrd 8151 | 
. . 3
 | 
| 51 | 50 | ralrimiva 2570 | 
. 2
 | 
| 52 | 10, 51 | rexlimddv 2619 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-icc 9970 | 
| This theorem is referenced by: dedekindicclemub 14863 dedekindicclemloc 14864 | 
| Copyright terms: Public domain | W3C validator |