ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemuub Unicode version

Theorem dedekindicclemuub 14189
Description: Lemma for dedekindicc 14196. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
dedekindicclemuub.u  |-  ( ph  ->  C  e.  U )
Assertion
Ref Expression
dedekindicclemuub  |-  ( ph  ->  A. z  e.  L  z  <  C )
Distinct variable groups:    A, r    B, r    C, q, r, z    L, q, z    U, q, z, r    ph, q,
z
Allowed substitution hints:    ph( r)    A( z,
q)    B( z, q)    L( r)

Proof of Theorem dedekindicclemuub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindicclemuub.u . . 3  |-  ( ph  ->  C  e.  U )
2 eleq1 2240 . . . . 5  |-  ( r  =  C  ->  (
r  e.  U  <->  C  e.  U ) )
3 breq2 4009 . . . . . 6  |-  ( r  =  C  ->  (
q  <  r  <->  q  <  C ) )
43rexbidv 2478 . . . . 5  |-  ( r  =  C  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  C ) )
52, 4bibi12d 235 . . . 4  |-  ( r  =  C  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( C  e.  U  <->  E. q  e.  U  q  <  C ) ) )
6 dedekindicc.ur . . . 4  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
7 dedekindicc.uss . . . . 5  |-  ( ph  ->  U  C_  ( A [,] B ) )
87, 1sseldd 3158 . . . 4  |-  ( ph  ->  C  e.  ( A [,] B ) )
95, 6, 8rspcdva 2848 . . 3  |-  ( ph  ->  ( C  e.  U  <->  E. q  e.  U  q  <  C ) )
101, 9mpbid 147 . 2  |-  ( ph  ->  E. q  e.  U  q  <  C )
11 dedekindicc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
12 dedekindicc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
13 iccssre 9957 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
1411, 12, 13syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
1514ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  ( A [,] B )  C_  RR )
16 dedekindicc.lss . . . . . . 7  |-  ( ph  ->  L  C_  ( A [,] B ) )
1716ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  L  C_  ( A [,] B ) )
18 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  L )
1917, 18sseldd 3158 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  ( A [,] B ) )
2015, 19sseldd 3158 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  e.  RR )
217ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  U  C_  ( A [,] B ) )
22 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  U )
2321, 22sseldd 3158 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  ( A [,] B ) )
2415, 23sseldd 3158 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  e.  RR )
2514, 8sseldd 3158 . . . . 5  |-  ( ph  ->  C  e.  RR )
2625ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  C  e.  RR )
27 breq1 4008 . . . . . . . . . 10  |-  ( a  =  q  ->  (
a  <  z  <->  q  <  z ) )
2827rspcev 2843 . . . . . . . . 9  |-  ( ( q  e.  U  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
2922, 28sylan 283 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
3027cbvrexv 2706 . . . . . . . 8  |-  ( E. a  e.  U  a  <  z  <->  E. q  e.  U  q  <  z )
3129, 30sylib 122 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. q  e.  U  q  <  z )
32 eleq1 2240 . . . . . . . . 9  |-  ( r  =  z  ->  (
r  e.  U  <->  z  e.  U ) )
33 breq2 4009 . . . . . . . . . 10  |-  ( r  =  z  ->  (
q  <  r  <->  q  <  z ) )
3433rexbidv 2478 . . . . . . . . 9  |-  ( r  =  z  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  z ) )
3532, 34bibi12d 235 . . . . . . . 8  |-  ( r  =  z  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( z  e.  U  <->  E. q  e.  U  q  <  z ) ) )
366ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  A. r  e.  ( A [,] B
) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
3719adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  ( A [,] B
) )
3835, 36, 37rspcdva 2848 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  (
z  e.  U  <->  E. q  e.  U  q  <  z ) )
3931, 38mpbird 167 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  U )
40 simplll 533 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  ph )
4118adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  L )
42 dedekindicc.disj . . . . . . . . 9  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
43 disj 3473 . . . . . . . . 9  |-  ( ( L  i^i  U )  =  (/)  <->  A. z  e.  L  -.  z  e.  U
)
4442, 43sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  L  -.  z  e.  U
)
4544r19.21bi 2565 . . . . . . 7  |-  ( (
ph  /\  z  e.  L )  ->  -.  z  e.  U )
4640, 41, 45syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  C ) )  /\  z  e.  L )  /\  q  <  z )  ->  -.  z  e.  U )
4739, 46pm2.65da 661 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  -.  q  <  z )
4820, 24, 47nltled 8080 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  <_  q )
49 simplrr 536 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  q  <  C )
5020, 24, 26, 48, 49lelttrd 8084 . . 3  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  C ) )  /\  z  e.  L
)  ->  z  <  C )
5150ralrimiva 2550 . 2  |-  ( (
ph  /\  ( q  e.  U  /\  q  <  C ) )  ->  A. z  e.  L  z  <  C )
5210, 51rexlimddv 2599 1  |-  ( ph  ->  A. z  e.  L  z  <  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    i^i cin 3130    C_ wss 3131   (/)c0 3424   class class class wbr 4005  (class class class)co 5877   RRcr 7812    < clt 7994   [,]cicc 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-icc 9897
This theorem is referenced by:  dedekindicclemub  14190  dedekindicclemloc  14191
  Copyright terms: Public domain W3C validator