Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindicclemuub | Unicode version |
Description: Lemma for dedekindicc 13261. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.) |
Ref | Expression |
---|---|
dedekindicc.a | |
dedekindicc.b | |
dedekindicc.lss | |
dedekindicc.uss | |
dedekindicc.lm | |
dedekindicc.um | |
dedekindicc.lr | |
dedekindicc.ur | |
dedekindicc.disj | |
dedekindicc.loc | |
dedekindicclemuub.u |
Ref | Expression |
---|---|
dedekindicclemuub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedekindicclemuub.u | . . 3 | |
2 | eleq1 2229 | . . . . 5 | |
3 | breq2 3986 | . . . . . 6 | |
4 | 3 | rexbidv 2467 | . . . . 5 |
5 | 2, 4 | bibi12d 234 | . . . 4 |
6 | dedekindicc.ur | . . . 4 | |
7 | dedekindicc.uss | . . . . 5 | |
8 | 7, 1 | sseldd 3143 | . . . 4 |
9 | 5, 6, 8 | rspcdva 2835 | . . 3 |
10 | 1, 9 | mpbid 146 | . 2 |
11 | dedekindicc.a | . . . . . . 7 | |
12 | dedekindicc.b | . . . . . . 7 | |
13 | iccssre 9891 | . . . . . . 7 | |
14 | 11, 12, 13 | syl2anc 409 | . . . . . 6 |
15 | 14 | ad2antrr 480 | . . . . 5 |
16 | dedekindicc.lss | . . . . . . 7 | |
17 | 16 | ad2antrr 480 | . . . . . 6 |
18 | simpr 109 | . . . . . 6 | |
19 | 17, 18 | sseldd 3143 | . . . . 5 |
20 | 15, 19 | sseldd 3143 | . . . 4 |
21 | 7 | ad2antrr 480 | . . . . . 6 |
22 | simplrl 525 | . . . . . 6 | |
23 | 21, 22 | sseldd 3143 | . . . . 5 |
24 | 15, 23 | sseldd 3143 | . . . 4 |
25 | 14, 8 | sseldd 3143 | . . . . 5 |
26 | 25 | ad2antrr 480 | . . . 4 |
27 | breq1 3985 | . . . . . . . . . 10 | |
28 | 27 | rspcev 2830 | . . . . . . . . 9 |
29 | 22, 28 | sylan 281 | . . . . . . . 8 |
30 | 27 | cbvrexv 2693 | . . . . . . . 8 |
31 | 29, 30 | sylib 121 | . . . . . . 7 |
32 | eleq1 2229 | . . . . . . . . 9 | |
33 | breq2 3986 | . . . . . . . . . 10 | |
34 | 33 | rexbidv 2467 | . . . . . . . . 9 |
35 | 32, 34 | bibi12d 234 | . . . . . . . 8 |
36 | 6 | ad3antrrr 484 | . . . . . . . 8 |
37 | 19 | adantr 274 | . . . . . . . 8 |
38 | 35, 36, 37 | rspcdva 2835 | . . . . . . 7 |
39 | 31, 38 | mpbird 166 | . . . . . 6 |
40 | simplll 523 | . . . . . . 7 | |
41 | 18 | adantr 274 | . . . . . . 7 |
42 | dedekindicc.disj | . . . . . . . . 9 | |
43 | disj 3457 | . . . . . . . . 9 | |
44 | 42, 43 | sylib 121 | . . . . . . . 8 |
45 | 44 | r19.21bi 2554 | . . . . . . 7 |
46 | 40, 41, 45 | syl2anc 409 | . . . . . 6 |
47 | 39, 46 | pm2.65da 651 | . . . . 5 |
48 | 20, 24, 47 | nltled 8019 | . . . 4 |
49 | simplrr 526 | . . . 4 | |
50 | 20, 24, 26, 48, 49 | lelttrd 8023 | . . 3 |
51 | 50 | ralrimiva 2539 | . 2 |
52 | 10, 51 | rexlimddv 2588 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wral 2444 wrex 2445 cin 3115 wss 3116 c0 3409 class class class wbr 3982 (class class class)co 5842 cr 7752 clt 7933 cicc 9827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-icc 9831 |
This theorem is referenced by: dedekindicclemub 13255 dedekindicclemloc 13256 |
Copyright terms: Public domain | W3C validator |