ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restdis Unicode version

Theorem restdis 14843
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restdis  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( ~P At  B )  =  ~P B )

Proof of Theorem restdis
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 distop 14744 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
21adantr 276 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  ->  ~P A  e.  Top )
3 elpw2g 4239 . . . . 5  |-  ( A  e.  V  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
43biimpar 297 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  ->  B  e.  ~P A
)
5 restopn2 14842 . . . 4  |-  ( ( ~P A  e.  Top  /\  B  e.  ~P A
)  ->  ( x  e.  ( ~P At  B )  <-> 
( x  e.  ~P A  /\  x  C_  B
) ) )
62, 4, 5syl2anc 411 . . 3  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ( ~P At  B )  <->  ( x  e.  ~P A  /\  x  C_  B ) ) )
7 velpw 3656 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
8 sstr 3232 . . . . . . . 8  |-  ( ( x  C_  B  /\  B  C_  A )  ->  x  C_  A )
98expcom 116 . . . . . . 7  |-  ( B 
C_  A  ->  (
x  C_  B  ->  x 
C_  A ) )
109adantl 277 . . . . . 6  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  ->  x  C_  A )
)
11 velpw 3656 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11imbitrrdi 162 . . . . 5  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  ->  x  e.  ~P A
) )
1312pm4.71rd 394 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  <->  ( x  e.  ~P A  /\  x  C_  B ) ) )
147, 13bitrid 192 . . 3  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ~P B 
<->  ( x  e.  ~P A  /\  x  C_  B
) ) )
156, 14bitr4d 191 . 2  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ( ~P At  B )  <->  x  e.  ~P B ) )
1615eqrdv 2227 1  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( ~P At  B )  =  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   ~Pcpw 3649  (class class class)co 5994   ↾t crest 13258   Topctop 14656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-rest 13260  df-topgen 13279  df-top 14657  df-topon 14670  df-bases 14702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator