ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restdis Unicode version

Theorem restdis 12978
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restdis  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( ~P At  B )  =  ~P B )

Proof of Theorem restdis
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 distop 12879 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
21adantr 274 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  ->  ~P A  e.  Top )
3 elpw2g 4142 . . . . 5  |-  ( A  e.  V  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
43biimpar 295 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  ->  B  e.  ~P A
)
5 restopn2 12977 . . . 4  |-  ( ( ~P A  e.  Top  /\  B  e.  ~P A
)  ->  ( x  e.  ( ~P At  B )  <-> 
( x  e.  ~P A  /\  x  C_  B
) ) )
62, 4, 5syl2anc 409 . . 3  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ( ~P At  B )  <->  ( x  e.  ~P A  /\  x  C_  B ) ) )
7 velpw 3573 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
8 sstr 3155 . . . . . . . 8  |-  ( ( x  C_  B  /\  B  C_  A )  ->  x  C_  A )
98expcom 115 . . . . . . 7  |-  ( B 
C_  A  ->  (
x  C_  B  ->  x 
C_  A ) )
109adantl 275 . . . . . 6  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  ->  x  C_  A )
)
11 velpw 3573 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11syl6ibr 161 . . . . 5  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  ->  x  e.  ~P A
) )
1312pm4.71rd 392 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  <->  ( x  e.  ~P A  /\  x  C_  B ) ) )
147, 13syl5bb 191 . . 3  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ~P B 
<->  ( x  e.  ~P A  /\  x  C_  B
) ) )
156, 14bitr4d 190 . 2  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ( ~P At  B )  <->  x  e.  ~P B ) )
1615eqrdv 2168 1  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( ~P At  B )  =  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    C_ wss 3121   ~Pcpw 3566  (class class class)co 5853   ↾t crest 12579   Topctop 12789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-rest 12581  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator