ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restdis Unicode version

Theorem restdis 14352
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restdis  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( ~P At  B )  =  ~P B )

Proof of Theorem restdis
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 distop 14253 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
21adantr 276 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  ->  ~P A  e.  Top )
3 elpw2g 4185 . . . . 5  |-  ( A  e.  V  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
43biimpar 297 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  ->  B  e.  ~P A
)
5 restopn2 14351 . . . 4  |-  ( ( ~P A  e.  Top  /\  B  e.  ~P A
)  ->  ( x  e.  ( ~P At  B )  <-> 
( x  e.  ~P A  /\  x  C_  B
) ) )
62, 4, 5syl2anc 411 . . 3  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ( ~P At  B )  <->  ( x  e.  ~P A  /\  x  C_  B ) ) )
7 velpw 3608 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
8 sstr 3187 . . . . . . . 8  |-  ( ( x  C_  B  /\  B  C_  A )  ->  x  C_  A )
98expcom 116 . . . . . . 7  |-  ( B 
C_  A  ->  (
x  C_  B  ->  x 
C_  A ) )
109adantl 277 . . . . . 6  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  ->  x  C_  A )
)
11 velpw 3608 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11imbitrrdi 162 . . . . 5  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  ->  x  e.  ~P A
) )
1312pm4.71rd 394 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  C_  B  <->  ( x  e.  ~P A  /\  x  C_  B ) ) )
147, 13bitrid 192 . . 3  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ~P B 
<->  ( x  e.  ~P A  /\  x  C_  B
) ) )
156, 14bitr4d 191 . 2  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( x  e.  ( ~P At  B )  <->  x  e.  ~P B ) )
1615eqrdv 2191 1  |-  ( ( A  e.  V  /\  B  C_  A )  -> 
( ~P At  B )  =  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3153   ~Pcpw 3601  (class class class)co 5918   ↾t crest 12850   Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-rest 12852  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator