Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restdis | Unicode version |
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
restdis | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop 12879 | . . . . 5 | |
2 | 1 | adantr 274 | . . . 4 |
3 | elpw2g 4142 | . . . . 5 | |
4 | 3 | biimpar 295 | . . . 4 |
5 | restopn2 12977 | . . . 4 ↾t | |
6 | 2, 4, 5 | syl2anc 409 | . . 3 ↾t |
7 | velpw 3573 | . . . 4 | |
8 | sstr 3155 | . . . . . . . 8 | |
9 | 8 | expcom 115 | . . . . . . 7 |
10 | 9 | adantl 275 | . . . . . 6 |
11 | velpw 3573 | . . . . . 6 | |
12 | 10, 11 | syl6ibr 161 | . . . . 5 |
13 | 12 | pm4.71rd 392 | . . . 4 |
14 | 7, 13 | syl5bb 191 | . . 3 |
15 | 6, 14 | bitr4d 190 | . 2 ↾t |
16 | 15 | eqrdv 2168 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wss 3121 cpw 3566 (class class class)co 5853 ↾t crest 12579 ctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-rest 12581 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |