Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > djucllem | GIF version |
Description: Lemma for djulcl 7016 and djurcl 7017. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
djucllem.1 | ⊢ 𝑋 ∈ V |
djucllem.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) |
Ref | Expression |
---|---|
djucllem | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 5510 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
2 | elex 2737 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | djucllem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
4 | 3 | snid 3607 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
5 | opelxpi 4636 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝐴 ∈ 𝐵) → 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) | |
6 | 4, 5 | mpan 421 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) |
7 | opeq2 3759 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑋, 𝑥〉 = 〈𝑋, 𝐴〉) | |
8 | djucllem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) | |
9 | 7, 8 | fvmptg 5562 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) → (𝐹‘𝐴) = 〈𝑋, 𝐴〉) |
10 | 2, 6, 9 | syl2anc 409 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹‘𝐴) = 〈𝑋, 𝐴〉) |
11 | 1, 10 | eqtrd 2198 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = 〈𝑋, 𝐴〉) |
12 | 11, 6 | eqeltrd 2243 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 〈cop 3579 ↦ cmpt 4043 × cxp 4602 ↾ cres 4606 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: djulclALT 13692 djurclALT 13693 |
Copyright terms: Public domain | W3C validator |