Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > djucllem | GIF version |
Description: Lemma for djulcl 7028 and djurcl 7029. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
djucllem.1 | ⊢ 𝑋 ∈ V |
djucllem.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) |
Ref | Expression |
---|---|
djucllem | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 5520 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
2 | elex 2741 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | djucllem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
4 | 3 | snid 3614 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
5 | opelxpi 4643 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝐴 ∈ 𝐵) → 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) | |
6 | 4, 5 | mpan 422 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) |
7 | opeq2 3766 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑋, 𝑥〉 = 〈𝑋, 𝐴〉) | |
8 | djucllem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) | |
9 | 7, 8 | fvmptg 5572 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) → (𝐹‘𝐴) = 〈𝑋, 𝐴〉) |
10 | 2, 6, 9 | syl2anc 409 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹‘𝐴) = 〈𝑋, 𝐴〉) |
11 | 1, 10 | eqtrd 2203 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = 〈𝑋, 𝐴〉) |
12 | 11, 6 | eqeltrd 2247 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3583 〈cop 3586 ↦ cmpt 4050 × cxp 4609 ↾ cres 4613 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: djulclALT 13836 djurclALT 13837 |
Copyright terms: Public domain | W3C validator |