![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > djucllem | GIF version |
Description: Lemma for djulcl 7112 and djurcl 7113. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
djucllem.1 | ⊢ 𝑋 ∈ V |
djucllem.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) |
Ref | Expression |
---|---|
djucllem | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 5579 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
2 | elex 2771 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | djucllem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
4 | 3 | snid 3650 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
5 | opelxpi 4692 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝐴 ∈ 𝐵) → 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) |
7 | opeq2 3806 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑋, 𝑥〉 = 〈𝑋, 𝐴〉) | |
8 | djucllem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) | |
9 | 7, 8 | fvmptg 5634 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) → (𝐹‘𝐴) = 〈𝑋, 𝐴〉) |
10 | 2, 6, 9 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹‘𝐴) = 〈𝑋, 𝐴〉) |
11 | 1, 10 | eqtrd 2226 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = 〈𝑋, 𝐴〉) |
12 | 11, 6 | eqeltrd 2270 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3619 〈cop 3622 ↦ cmpt 4091 × cxp 4658 ↾ cres 4662 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 |
This theorem is referenced by: djulclALT 15363 djurclALT 15364 |
Copyright terms: Public domain | W3C validator |