![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > djucllem | GIF version |
Description: Lemma for djulcl 7052 and djurcl 7053. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
djucllem.1 | ⊢ 𝑋 ∈ V |
djucllem.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) |
Ref | Expression |
---|---|
djucllem | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 5541 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
2 | elex 2750 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | djucllem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
4 | 3 | snid 3625 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
5 | opelxpi 4660 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝐴 ∈ 𝐵) → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵)) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵)) |
7 | opeq2 3781 | . . . . 5 ⊢ (𝑥 = 𝐴 → ⟨𝑋, 𝑥⟩ = ⟨𝑋, 𝐴⟩) | |
8 | djucllem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) | |
9 | 7, 8 | fvmptg 5594 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵)) → (𝐹‘𝐴) = ⟨𝑋, 𝐴⟩) |
10 | 2, 6, 9 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹‘𝐴) = ⟨𝑋, 𝐴⟩) |
11 | 1, 10 | eqtrd 2210 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ⟨𝑋, 𝐴⟩) |
12 | 11, 6 | eqeltrd 2254 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 ⟨cop 3597 ↦ cmpt 4066 × cxp 4626 ↾ cres 4630 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 |
This theorem is referenced by: djulclALT 14638 djurclALT 14639 |
Copyright terms: Public domain | W3C validator |