Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djucllem GIF version

Theorem djucllem 13691
Description: Lemma for djulcl 7016 and djurcl 7017. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
djucllem.1 𝑋 ∈ V
djucllem.2 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djucllem (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem djucllem
StepHypRef Expression
1 fvres 5510 . . 3 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
2 elex 2737 . . . 4 (𝐴𝐵𝐴 ∈ V)
3 djucllem.1 . . . . . 6 𝑋 ∈ V
43snid 3607 . . . . 5 𝑋 ∈ {𝑋}
5 opelxpi 4636 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝐴𝐵) → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵))
64, 5mpan 421 . . . 4 (𝐴𝐵 → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵))
7 opeq2 3759 . . . . 5 (𝑥 = 𝐴 → ⟨𝑋, 𝑥⟩ = ⟨𝑋, 𝐴⟩)
8 djucllem.2 . . . . 5 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
97, 8fvmptg 5562 . . . 4 ((𝐴 ∈ V ∧ ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵)) → (𝐹𝐴) = ⟨𝑋, 𝐴⟩)
102, 6, 9syl2anc 409 . . 3 (𝐴𝐵 → (𝐹𝐴) = ⟨𝑋, 𝐴⟩)
111, 10eqtrd 2198 . 2 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ⟨𝑋, 𝐴⟩)
1211, 6eqeltrd 2243 1 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  cop 3579  cmpt 4043   × cxp 4602  cres 4606  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by:  djulclALT  13692  djurclALT  13693
  Copyright terms: Public domain W3C validator