Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djucllem GIF version

Theorem djucllem 15292
Description: Lemma for djulcl 7110 and djurcl 7111. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
djucllem.1 𝑋 ∈ V
djucllem.2 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djucllem (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem djucllem
StepHypRef Expression
1 fvres 5578 . . 3 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
2 elex 2771 . . . 4 (𝐴𝐵𝐴 ∈ V)
3 djucllem.1 . . . . . 6 𝑋 ∈ V
43snid 3649 . . . . 5 𝑋 ∈ {𝑋}
5 opelxpi 4691 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝐴𝐵) → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵))
64, 5mpan 424 . . . 4 (𝐴𝐵 → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵))
7 opeq2 3805 . . . . 5 (𝑥 = 𝐴 → ⟨𝑋, 𝑥⟩ = ⟨𝑋, 𝐴⟩)
8 djucllem.2 . . . . 5 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
97, 8fvmptg 5633 . . . 4 ((𝐴 ∈ V ∧ ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵)) → (𝐹𝐴) = ⟨𝑋, 𝐴⟩)
102, 6, 9syl2anc 411 . . 3 (𝐴𝐵 → (𝐹𝐴) = ⟨𝑋, 𝐴⟩)
111, 10eqtrd 2226 . 2 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ⟨𝑋, 𝐴⟩)
1211, 6eqeltrd 2270 1 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  cop 3621  cmpt 4090   × cxp 4657  cres 4661  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262
This theorem is referenced by:  djulclALT  15293  djurclALT  15294
  Copyright terms: Public domain W3C validator