Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djucllem GIF version

Theorem djucllem 15906
Description: Lemma for djulcl 7174 and djurcl 7175. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
djucllem.1 𝑋 ∈ V
djucllem.2 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djucllem (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem djucllem
StepHypRef Expression
1 fvres 5618 . . 3 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
2 elex 2785 . . . 4 (𝐴𝐵𝐴 ∈ V)
3 djucllem.1 . . . . . 6 𝑋 ∈ V
43snid 3669 . . . . 5 𝑋 ∈ {𝑋}
5 opelxpi 4720 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝐴𝐵) → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵))
64, 5mpan 424 . . . 4 (𝐴𝐵 → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵))
7 opeq2 3829 . . . . 5 (𝑥 = 𝐴 → ⟨𝑋, 𝑥⟩ = ⟨𝑋, 𝐴⟩)
8 djucllem.2 . . . . 5 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
97, 8fvmptg 5673 . . . 4 ((𝐴 ∈ V ∧ ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵)) → (𝐹𝐴) = ⟨𝑋, 𝐴⟩)
102, 6, 9syl2anc 411 . . 3 (𝐴𝐵 → (𝐹𝐴) = ⟨𝑋, 𝐴⟩)
111, 10eqtrd 2239 . 2 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ⟨𝑋, 𝐴⟩)
1211, 6eqeltrd 2283 1 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638  cop 3641  cmpt 4116   × cxp 4686  cres 4690  cfv 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-res 4700  df-iota 5246  df-fun 5287  df-fv 5293
This theorem is referenced by:  djulclALT  15907  djurclALT  15908
  Copyright terms: Public domain W3C validator