Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djucllem GIF version

Theorem djucllem 13835
Description: Lemma for djulcl 7028 and djurcl 7029. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
djucllem.1 𝑋 ∈ V
djucllem.2 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djucllem (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem djucllem
StepHypRef Expression
1 fvres 5520 . . 3 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
2 elex 2741 . . . 4 (𝐴𝐵𝐴 ∈ V)
3 djucllem.1 . . . . . 6 𝑋 ∈ V
43snid 3614 . . . . 5 𝑋 ∈ {𝑋}
5 opelxpi 4643 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝐴𝐵) → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵))
64, 5mpan 422 . . . 4 (𝐴𝐵 → ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵))
7 opeq2 3766 . . . . 5 (𝑥 = 𝐴 → ⟨𝑋, 𝑥⟩ = ⟨𝑋, 𝐴⟩)
8 djucllem.2 . . . . 5 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
97, 8fvmptg 5572 . . . 4 ((𝐴 ∈ V ∧ ⟨𝑋, 𝐴⟩ ∈ ({𝑋} × 𝐵)) → (𝐹𝐴) = ⟨𝑋, 𝐴⟩)
102, 6, 9syl2anc 409 . . 3 (𝐴𝐵 → (𝐹𝐴) = ⟨𝑋, 𝐴⟩)
111, 10eqtrd 2203 . 2 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ⟨𝑋, 𝐴⟩)
1211, 6eqeltrd 2247 1 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583  cop 3586  cmpt 4050   × cxp 4609  cres 4613  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  djulclALT  13836  djurclALT  13837
  Copyright terms: Public domain W3C validator