| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > djucllem | GIF version | ||
| Description: Lemma for djulcl 7174 and djurcl 7175. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| djucllem.1 | ⊢ 𝑋 ∈ V |
| djucllem.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) |
| Ref | Expression |
|---|---|
| djucllem | ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 5618 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
| 2 | elex 2785 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | djucllem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 4 | 3 | snid 3669 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
| 5 | opelxpi 4720 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝐴 ∈ 𝐵) → 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) |
| 7 | opeq2 3829 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑋, 𝑥〉 = 〈𝑋, 𝐴〉) | |
| 8 | djucllem.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) | |
| 9 | 7, 8 | fvmptg 5673 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 〈𝑋, 𝐴〉 ∈ ({𝑋} × 𝐵)) → (𝐹‘𝐴) = 〈𝑋, 𝐴〉) |
| 10 | 2, 6, 9 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹‘𝐴) = 〈𝑋, 𝐴〉) |
| 11 | 1, 10 | eqtrd 2239 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = 〈𝑋, 𝐴〉) |
| 12 | 11, 6 | eqeltrd 2283 | 1 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) ∈ ({𝑋} × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3638 〈cop 3641 ↦ cmpt 4116 × cxp 4686 ↾ cres 4690 ‘cfv 5285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-res 4700 df-iota 5246 df-fun 5287 df-fv 5293 |
| This theorem is referenced by: djulclALT 15907 djurclALT 15908 |
| Copyright terms: Public domain | W3C validator |