ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclr Unicode version

Theorem djulclr 7151
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djulclr  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )

Proof of Theorem djulclr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvres 5600 . 2  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  =  (inl
`  C ) )
2 elex 2783 . . . 4  |-  ( C  e.  A  ->  C  e.  _V )
3 0ex 4171 . . . . . 6  |-  (/)  e.  _V
43snid 3664 . . . . 5  |-  (/)  e.  { (/)
}
5 opelxpi 4707 . . . . 5  |-  ( (
(/)  e.  { (/) }  /\  C  e.  A )  -> 
<. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
64, 5mpan 424 . . . 4  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
7 opeq2 3820 . . . . 5  |-  ( x  =  C  ->  <. (/) ,  x >.  =  <. (/) ,  C >. )
8 df-inl 7149 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
97, 8fvmptg 5655 . . . 4  |-  ( ( C  e.  _V  /\  <. (/)
,  C >.  e.  ( { (/) }  X.  A
) )  ->  (inl `  C )  =  <. (/)
,  C >. )
102, 6, 9syl2anc 411 . . 3  |-  ( C  e.  A  ->  (inl `  C )  =  <. (/)
,  C >. )
11 elun1 3340 . . . . 5  |-  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
126, 11syl 14 . . . 4  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
13 df-dju 7140 . . . 4  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1412, 13eleqtrrdi 2299 . . 3  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( A B ) )
1510, 14eqeltrd 2282 . 2  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )
161, 15eqeltrd 2282 1  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    u. cun 3164   (/)c0 3460   {csn 3633   <.cop 3636    X. cxp 4673    |` cres 4677   ` cfv 5271   1oc1o 6495   ⊔ cdju 7139  inlcinl 7147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-dju 7140  df-inl 7149
This theorem is referenced by:  inlresf1  7163
  Copyright terms: Public domain W3C validator