ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclr Unicode version

Theorem djulclr 7172
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djulclr  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )

Proof of Theorem djulclr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvres 5618 . 2  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  =  (inl
`  C ) )
2 elex 2785 . . . 4  |-  ( C  e.  A  ->  C  e.  _V )
3 0ex 4182 . . . . . 6  |-  (/)  e.  _V
43snid 3669 . . . . 5  |-  (/)  e.  { (/)
}
5 opelxpi 4720 . . . . 5  |-  ( (
(/)  e.  { (/) }  /\  C  e.  A )  -> 
<. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
64, 5mpan 424 . . . 4  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( { (/) }  X.  A ) )
7 opeq2 3829 . . . . 5  |-  ( x  =  C  ->  <. (/) ,  x >.  =  <. (/) ,  C >. )
8 df-inl 7170 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
97, 8fvmptg 5673 . . . 4  |-  ( ( C  e.  _V  /\  <. (/)
,  C >.  e.  ( { (/) }  X.  A
) )  ->  (inl `  C )  =  <. (/)
,  C >. )
102, 6, 9syl2anc 411 . . 3  |-  ( C  e.  A  ->  (inl `  C )  =  <. (/)
,  C >. )
11 elun1 3344 . . . . 5  |-  ( <. (/)
,  C >.  e.  ( { (/) }  X.  A
)  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
126, 11syl 14 . . . 4  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
13 df-dju 7161 . . . 4  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1412, 13eleqtrrdi 2300 . . 3  |-  ( C  e.  A  ->  <. (/) ,  C >.  e.  ( A B ) )
1510, 14eqeltrd 2283 . 2  |-  ( C  e.  A  ->  (inl `  C )  e.  ( A B ) )
161, 15eqeltrd 2283 1  |-  ( C  e.  A  ->  (
(inl  |`  A ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    u. cun 3168   (/)c0 3464   {csn 3638   <.cop 3641    X. cxp 4686    |` cres 4690   ` cfv 5285   1oc1o 6513   ⊔ cdju 7160  inlcinl 7168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-res 4700  df-iota 5246  df-fun 5287  df-fv 5293  df-dju 7161  df-inl 7170
This theorem is referenced by:  inlresf1  7184
  Copyright terms: Public domain W3C validator