ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurclr Unicode version

Theorem djurclr 7178
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djurclr  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )

Proof of Theorem djurclr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvres 5623 . 2  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  =  (inr
`  C ) )
2 elex 2788 . . . 4  |-  ( C  e.  B  ->  C  e.  _V )
3 1oex 6533 . . . . . 6  |-  1o  e.  _V
43snid 3674 . . . . 5  |-  1o  e.  { 1o }
5 opelxpi 4725 . . . . 5  |-  ( ( 1o  e.  { 1o }  /\  C  e.  B
)  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
64, 5mpan 424 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
7 opeq2 3834 . . . . 5  |-  ( x  =  C  ->  <. 1o ,  x >.  =  <. 1o ,  C >. )
8 df-inr 7176 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
97, 8fvmptg 5678 . . . 4  |-  ( ( C  e.  _V  /\  <. 1o ,  C >.  e.  ( { 1o }  X.  B ) )  -> 
(inr `  C )  =  <. 1o ,  C >. )
102, 6, 9syl2anc 411 . . 3  |-  ( C  e.  B  ->  (inr `  C )  =  <. 1o ,  C >. )
11 elun2 3349 . . . . 5  |-  ( <. 1o ,  C >.  e.  ( { 1o }  X.  B )  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
126, 11syl 14 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
13 df-dju 7166 . . . 4  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1412, 13eleqtrrdi 2301 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( A B ) )
1510, 14eqeltrd 2284 . 2  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )
161, 15eqeltrd 2284 1  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172   (/)c0 3468   {csn 3643   <.cop 3646    X. cxp 4691    |` cres 4695   ` cfv 5290   1oc1o 6518   ⊔ cdju 7165  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-1o 6525  df-dju 7166  df-inr 7176
This theorem is referenced by:  inrresf1  7190
  Copyright terms: Public domain W3C validator