ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurclr Unicode version

Theorem djurclr 7109
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djurclr  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )

Proof of Theorem djurclr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvres 5578 . 2  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  =  (inr
`  C ) )
2 elex 2771 . . . 4  |-  ( C  e.  B  ->  C  e.  _V )
3 1oex 6477 . . . . . 6  |-  1o  e.  _V
43snid 3649 . . . . 5  |-  1o  e.  { 1o }
5 opelxpi 4691 . . . . 5  |-  ( ( 1o  e.  { 1o }  /\  C  e.  B
)  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
64, 5mpan 424 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
7 opeq2 3805 . . . . 5  |-  ( x  =  C  ->  <. 1o ,  x >.  =  <. 1o ,  C >. )
8 df-inr 7107 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
97, 8fvmptg 5633 . . . 4  |-  ( ( C  e.  _V  /\  <. 1o ,  C >.  e.  ( { 1o }  X.  B ) )  -> 
(inr `  C )  =  <. 1o ,  C >. )
102, 6, 9syl2anc 411 . . 3  |-  ( C  e.  B  ->  (inr `  C )  =  <. 1o ,  C >. )
11 elun2 3327 . . . . 5  |-  ( <. 1o ,  C >.  e.  ( { 1o }  X.  B )  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
126, 11syl 14 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
13 df-dju 7097 . . . 4  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1412, 13eleqtrrdi 2287 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( A B ) )
1510, 14eqeltrd 2270 . 2  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )
161, 15eqeltrd 2270 1  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151   (/)c0 3446   {csn 3618   <.cop 3621    X. cxp 4657    |` cres 4661   ` cfv 5254   1oc1o 6462   ⊔ cdju 7096  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-1o 6469  df-dju 7097  df-inr 7107
This theorem is referenced by:  inrresf1  7121
  Copyright terms: Public domain W3C validator