ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurclr Unicode version

Theorem djurclr 7116
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djurclr  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )

Proof of Theorem djurclr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvres 5582 . 2  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  =  (inr
`  C ) )
2 elex 2774 . . . 4  |-  ( C  e.  B  ->  C  e.  _V )
3 1oex 6482 . . . . . 6  |-  1o  e.  _V
43snid 3653 . . . . 5  |-  1o  e.  { 1o }
5 opelxpi 4695 . . . . 5  |-  ( ( 1o  e.  { 1o }  /\  C  e.  B
)  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
64, 5mpan 424 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
7 opeq2 3809 . . . . 5  |-  ( x  =  C  ->  <. 1o ,  x >.  =  <. 1o ,  C >. )
8 df-inr 7114 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
97, 8fvmptg 5637 . . . 4  |-  ( ( C  e.  _V  /\  <. 1o ,  C >.  e.  ( { 1o }  X.  B ) )  -> 
(inr `  C )  =  <. 1o ,  C >. )
102, 6, 9syl2anc 411 . . 3  |-  ( C  e.  B  ->  (inr `  C )  =  <. 1o ,  C >. )
11 elun2 3331 . . . . 5  |-  ( <. 1o ,  C >.  e.  ( { 1o }  X.  B )  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
126, 11syl 14 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
13 df-dju 7104 . . . 4  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1412, 13eleqtrrdi 2290 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( A B ) )
1510, 14eqeltrd 2273 . 2  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )
161, 15eqeltrd 2273 1  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155   (/)c0 3450   {csn 3622   <.cop 3625    X. cxp 4661    |` cres 4665   ` cfv 5258   1oc1o 6467   ⊔ cdju 7103  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-1o 6474  df-dju 7104  df-inr 7114
This theorem is referenced by:  inrresf1  7128
  Copyright terms: Public domain W3C validator