ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurclr Unicode version

Theorem djurclr 6935
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djurclr  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )

Proof of Theorem djurclr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvres 5445 . 2  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  =  (inr
`  C ) )
2 elex 2697 . . . 4  |-  ( C  e.  B  ->  C  e.  _V )
3 1oex 6321 . . . . . 6  |-  1o  e.  _V
43snid 3556 . . . . 5  |-  1o  e.  { 1o }
5 opelxpi 4571 . . . . 5  |-  ( ( 1o  e.  { 1o }  /\  C  e.  B
)  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
64, 5mpan 420 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
7 opeq2 3706 . . . . 5  |-  ( x  =  C  ->  <. 1o ,  x >.  =  <. 1o ,  C >. )
8 df-inr 6933 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
97, 8fvmptg 5497 . . . 4  |-  ( ( C  e.  _V  /\  <. 1o ,  C >.  e.  ( { 1o }  X.  B ) )  -> 
(inr `  C )  =  <. 1o ,  C >. )
102, 6, 9syl2anc 408 . . 3  |-  ( C  e.  B  ->  (inr `  C )  =  <. 1o ,  C >. )
11 elun2 3244 . . . . 5  |-  ( <. 1o ,  C >.  e.  ( { 1o }  X.  B )  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
126, 11syl 14 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
13 df-dju 6923 . . . 4  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1412, 13eleqtrrdi 2233 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( A B ) )
1510, 14eqeltrd 2216 . 2  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )
161, 15eqeltrd 2216 1  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   _Vcvv 2686    u. cun 3069   (/)c0 3363   {csn 3527   <.cop 3530    X. cxp 4537    |` cres 4541   ` cfv 5123   1oc1o 6306   ⊔ cdju 6922  inrcinr 6931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131  df-1o 6313  df-dju 6923  df-inr 6933
This theorem is referenced by:  inrresf1  6947
  Copyright terms: Public domain W3C validator