ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurclr Unicode version

Theorem djurclr 7052
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djurclr  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )

Proof of Theorem djurclr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvres 5541 . 2  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  =  (inr
`  C ) )
2 elex 2750 . . . 4  |-  ( C  e.  B  ->  C  e.  _V )
3 1oex 6428 . . . . . 6  |-  1o  e.  _V
43snid 3625 . . . . 5  |-  1o  e.  { 1o }
5 opelxpi 4660 . . . . 5  |-  ( ( 1o  e.  { 1o }  /\  C  e.  B
)  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
64, 5mpan 424 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( { 1o }  X.  B
) )
7 opeq2 3781 . . . . 5  |-  ( x  =  C  ->  <. 1o ,  x >.  =  <. 1o ,  C >. )
8 df-inr 7050 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
97, 8fvmptg 5595 . . . 4  |-  ( ( C  e.  _V  /\  <. 1o ,  C >.  e.  ( { 1o }  X.  B ) )  -> 
(inr `  C )  =  <. 1o ,  C >. )
102, 6, 9syl2anc 411 . . 3  |-  ( C  e.  B  ->  (inr `  C )  =  <. 1o ,  C >. )
11 elun2 3305 . . . . 5  |-  ( <. 1o ,  C >.  e.  ( { 1o }  X.  B )  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
126, 11syl 14 . . . 4  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
13 df-dju 7040 . . . 4  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
1412, 13eleqtrrdi 2271 . . 3  |-  ( C  e.  B  ->  <. 1o ,  C >.  e.  ( A B ) )
1510, 14eqeltrd 2254 . 2  |-  ( C  e.  B  ->  (inr `  C )  e.  ( A B ) )
161, 15eqeltrd 2254 1  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739    u. cun 3129   (/)c0 3424   {csn 3594   <.cop 3597    X. cxp 4626    |` cres 4630   ` cfv 5218   1oc1o 6413   ⊔ cdju 7039  inrcinr 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-1o 6420  df-dju 7040  df-inr 7050
This theorem is referenced by:  inrresf1  7064
  Copyright terms: Public domain W3C validator