ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptss GIF version

Theorem dmmptss 5082
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpo.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 5081 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3 ssrab2 3213 . 2 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
42, 3eqsstri 3160 1 dom 𝐹𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1335  wcel 2128  {crab 2439  Vcvv 2712  wss 3102  cmpt 4025  dom cdm 4586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-mpt 4027  df-xp 4592  df-rel 4593  df-cnv 4594  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599
This theorem is referenced by:  mptrcl  5550  fvmptssdm  5552  elfvmptrab1  5562  mptexg  5692  dmmpossx  6147  tposssxp  6196  lmrcl  12591  cnprcl2k  12606  isxms2  12852
  Copyright terms: Public domain W3C validator