ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptss GIF version

Theorem dmmptss 4940
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 4939 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3 ssrab2 3107 . 2 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
42, 3eqsstri 3057 1 dom 𝐹𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1290  wcel 1439  {crab 2364  Vcvv 2620  wss 3000  cmpt 3905  dom cdm 4452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-mpt 3907  df-xp 4458  df-rel 4459  df-cnv 4460  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465
This theorem is referenced by:  fvmptssdm  5400  mptexg  5536  dmmpt2ssx  5983  tposssxp  6028
  Copyright terms: Public domain W3C validator