![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmmptss | GIF version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
Ref | Expression |
---|---|
dmmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 5162 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | ssrab2 3265 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 | |
4 | 2, 3 | eqsstri 3212 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 {crab 2476 Vcvv 2760 ⊆ wss 3154 ↦ cmpt 4091 dom cdm 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-mpt 4093 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: mptrcl 5641 fvmptssdm 5643 elfvmptrab1 5653 mptexg 5784 mptexw 6167 dmmpossx 6254 tposssxp 6304 lmrcl 14370 cnprcl2k 14385 isxms2 14631 |
Copyright terms: Public domain | W3C validator |