ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptss GIF version

Theorem dmmptss 5162
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpo.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 5161 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3 ssrab2 3264 . 2 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
42, 3eqsstri 3211 1 dom 𝐹𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  wss 3153  cmpt 4090  dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  mptrcl  5640  fvmptssdm  5642  elfvmptrab1  5652  mptexg  5783  mptexw  6165  dmmpossx  6252  tposssxp  6302  lmrcl  14359  cnprcl2k  14374  isxms2  14620
  Copyright terms: Public domain W3C validator