ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptss GIF version

Theorem dmmptss 5193
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpo.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 5192 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3 ssrab2 3282 . 2 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
42, 3eqsstri 3229 1 dom 𝐹𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  wss 3170  cmpt 4116  dom cdm 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-mpt 4118  df-xp 4694  df-rel 4695  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701
This theorem is referenced by:  mptrcl  5680  fvmptssdm  5682  elfvmptrab1  5692  mptexg  5827  mptexw  6216  dmmpossx  6303  tposssxp  6353  lmrcl  14748  cnprcl2k  14763  isxms2  15009
  Copyright terms: Public domain W3C validator