ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptss GIF version

Theorem dmmptss 5167
Description: The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptss dom 𝐹𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmptss
StepHypRef Expression
1 dmmpo.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 5166 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3 ssrab2 3269 . 2 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
42, 3eqsstri 3216 1 dom 𝐹𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  wss 3157  cmpt 4095  dom cdm 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  mptrcl  5647  fvmptssdm  5649  elfvmptrab1  5659  mptexg  5790  mptexw  6179  dmmpossx  6266  tposssxp  6316  lmrcl  14511  cnprcl2k  14526  isxms2  14772
  Copyright terms: Public domain W3C validator