ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhdmp1 Unicode version

Theorem ennnfonelemhdmp1 12380
Description: Lemma for ennnfone 12396. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemhdmp1.p  |-  ( ph  ->  P  e.  NN0 )
ennnfonelemhdmp1.nel  |-  ( ph  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
Assertion
Ref Expression
ennnfonelemhdmp1  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  suc  dom  ( H `  P
) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    x, H, y    j, J    x, N, y    P, j, x, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( k, n)    F( j, k, n)    G( x, y, k, n)    H( j, k, n)    J( x, y, k, n)    N( j,
k, n)

Proof of Theorem ennnfonelemhdmp1
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . . 7  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . . 7  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . . 7  |-  H  =  seq 0 ( G ,  J )
8 ennnfonelemhdmp1.p . . . . . . 7  |-  ( ph  ->  P  e.  NN0 )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemp1 12377 . . . . . 6  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
10 ennnfonelemhdmp1.nel . . . . . . 7  |-  ( ph  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
1110iffalsed 3544 . . . . . 6  |-  ( ph  ->  if ( ( F `
 ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  =  ( ( H `
 P )  u. 
{ <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
129, 11eqtrd 2210 . . . . 5  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
1312dmeqd 4824 . . . 4  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  dom  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
14 dmun 4829 . . . 4  |-  dom  (
( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >. } )  =  ( dom  ( H `  P )  u.  dom  {
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )
1513, 14eqtrdi 2226 . . 3  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  ( dom  ( H `  P )  u.  dom  {
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
16 fof 5433 . . . . . . 7  |-  ( F : om -onto-> A  ->  F : om --> A )
172, 16syl 14 . . . . . 6  |-  ( ph  ->  F : om --> A )
185frechashgf1o 10401 . . . . . . . . 9  |-  N : om
-1-1-onto-> NN0
19 f1ocnv 5469 . . . . . . . . 9  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
20 f1of 5456 . . . . . . . . 9  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
2118, 19, 20mp2b 8 . . . . . . . 8  |-  `' N : NN0 --> om
2221a1i 9 . . . . . . 7  |-  ( ph  ->  `' N : NN0 --> om )
2322, 8ffvelcdmd 5647 . . . . . 6  |-  ( ph  ->  ( `' N `  P )  e.  om )
2417, 23ffvelcdmd 5647 . . . . 5  |-  ( ph  ->  ( F `  ( `' N `  P ) )  e.  A )
25 dmsnopg 5095 . . . . 5  |-  ( ( F `  ( `' N `  P ) )  e.  A  ->  dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  =  { dom  ( H `  P
) } )
2624, 25syl 14 . . . 4  |-  ( ph  ->  dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  =  { dom  ( H `  P
) } )
2726uneq2d 3289 . . 3  |-  ( ph  ->  ( dom  ( H `
 P )  u. 
dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )  =  ( dom  ( H `
 P )  u. 
{ dom  ( H `  P ) } ) )
2815, 27eqtrd 2210 . 2  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  ( dom  ( H `  P )  u.  { dom  ( H `  P
) } ) )
29 df-suc 4367 . 2  |-  suc  dom  ( H `  P )  =  ( dom  ( H `  P )  u.  { dom  ( H `
 P ) } )
3028, 29eqtr4di 2228 1  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  suc  dom  ( H `  P
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456    u. cun 3127   (/)c0 3422   ifcif 3534   {csn 3591   <.cop 3594    |-> cmpt 4061   suc csuc 4361   omcom 4585   `'ccnv 4621   dom cdm 4622   "cima 4625   -->wf 5207   -onto->wfo 5209   -1-1-onto->wf1o 5210   ` cfv 5211  (class class class)co 5868    e. cmpo 5870  freccfrec 6384    ^pm cpm 6642   0cc0 7789   1c1 7790    + caddc 7792    - cmin 8105   NN0cn0 9152   ZZcz 9229    seqcseq 10418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-addcom 7889  ax-addass 7891  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-0id 7897  ax-rnegex 7898  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-ltadd 7905
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4289  df-iord 4362  df-on 4364  df-ilim 4365  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-recs 6299  df-frec 6385  df-pm 6644  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-inn 8896  df-n0 9153  df-z 9230  df-uz 9505  df-seqfrec 10419
This theorem is referenced by:  ennnfonelemhf1o  12384
  Copyright terms: Public domain W3C validator