ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhdmp1 Unicode version

Theorem ennnfonelemhdmp1 12342
Description: Lemma for ennnfone 12358. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemhdmp1.p  |-  ( ph  ->  P  e.  NN0 )
ennnfonelemhdmp1.nel  |-  ( ph  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
Assertion
Ref Expression
ennnfonelemhdmp1  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  suc  dom  ( H `  P
) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    x, H, y    j, J    x, N, y    P, j, x, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( k, n)    F( j, k, n)    G( x, y, k, n)    H( j, k, n)    J( x, y, k, n)    N( j,
k, n)

Proof of Theorem ennnfonelemhdmp1
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . . 7  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . . 7  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . . 7  |-  H  =  seq 0 ( G ,  J )
8 ennnfonelemhdmp1.p . . . . . . 7  |-  ( ph  ->  P  e.  NN0 )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemp1 12339 . . . . . 6  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
10 ennnfonelemhdmp1.nel . . . . . . 7  |-  ( ph  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
1110iffalsed 3530 . . . . . 6  |-  ( ph  ->  if ( ( F `
 ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  =  ( ( H `
 P )  u. 
{ <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
129, 11eqtrd 2198 . . . . 5  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
1312dmeqd 4806 . . . 4  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  dom  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
14 dmun 4811 . . . 4  |-  dom  (
( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >. } )  =  ( dom  ( H `  P )  u.  dom  {
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )
1513, 14eqtrdi 2215 . . 3  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  ( dom  ( H `  P )  u.  dom  {
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
16 fof 5410 . . . . . . 7  |-  ( F : om -onto-> A  ->  F : om --> A )
172, 16syl 14 . . . . . 6  |-  ( ph  ->  F : om --> A )
185frechashgf1o 10363 . . . . . . . . 9  |-  N : om
-1-1-onto-> NN0
19 f1ocnv 5445 . . . . . . . . 9  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
20 f1of 5432 . . . . . . . . 9  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
2118, 19, 20mp2b 8 . . . . . . . 8  |-  `' N : NN0 --> om
2221a1i 9 . . . . . . 7  |-  ( ph  ->  `' N : NN0 --> om )
2322, 8ffvelrnd 5621 . . . . . 6  |-  ( ph  ->  ( `' N `  P )  e.  om )
2417, 23ffvelrnd 5621 . . . . 5  |-  ( ph  ->  ( F `  ( `' N `  P ) )  e.  A )
25 dmsnopg 5075 . . . . 5  |-  ( ( F `  ( `' N `  P ) )  e.  A  ->  dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  =  { dom  ( H `  P
) } )
2624, 25syl 14 . . . 4  |-  ( ph  ->  dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  =  { dom  ( H `  P
) } )
2726uneq2d 3276 . . 3  |-  ( ph  ->  ( dom  ( H `
 P )  u. 
dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )  =  ( dom  ( H `
 P )  u. 
{ dom  ( H `  P ) } ) )
2815, 27eqtrd 2198 . 2  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  ( dom  ( H `  P )  u.  { dom  ( H `  P
) } ) )
29 df-suc 4349 . 2  |-  suc  dom  ( H `  P )  =  ( dom  ( H `  P )  u.  { dom  ( H `
 P ) } )
3028, 29eqtr4di 2217 1  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  suc  dom  ( H `  P
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445    u. cun 3114   (/)c0 3409   ifcif 3520   {csn 3576   <.cop 3579    |-> cmpt 4043   suc csuc 4343   omcom 4567   `'ccnv 4603   dom cdm 4604   "cima 4607   -->wf 5184   -onto->wfo 5186   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842    e. cmpo 5844  freccfrec 6358    ^pm cpm 6615   0cc0 7753   1c1 7754    + caddc 7756    - cmin 8069   NN0cn0 9114   ZZcz 9191    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pm 6617  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  ennnfonelemhf1o  12346
  Copyright terms: Public domain W3C validator