ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhdmp1 Unicode version

Theorem ennnfonelemhdmp1 12569
Description: Lemma for ennnfone 12585. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemhdmp1.p  |-  ( ph  ->  P  e.  NN0 )
ennnfonelemhdmp1.nel  |-  ( ph  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
Assertion
Ref Expression
ennnfonelemhdmp1  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  suc  dom  ( H `  P
) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    x, H, y    j, J    x, N, y    P, j, x, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( k, n)    F( j, k, n)    G( x, y, k, n)    H( j, k, n)    J( x, y, k, n)    N( j,
k, n)

Proof of Theorem ennnfonelemhdmp1
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . . 7  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . . 7  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . . 7  |-  H  =  seq 0 ( G ,  J )
8 ennnfonelemhdmp1.p . . . . . . 7  |-  ( ph  ->  P  e.  NN0 )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemp1 12566 . . . . . 6  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
10 ennnfonelemhdmp1.nel . . . . . . 7  |-  ( ph  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
1110iffalsed 3568 . . . . . 6  |-  ( ph  ->  if ( ( F `
 ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
 P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  =  ( ( H `
 P )  u. 
{ <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
129, 11eqtrd 2226 . . . . 5  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
1312dmeqd 4865 . . . 4  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  dom  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
14 dmun 4870 . . . 4  |-  dom  (
( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >. } )  =  ( dom  ( H `  P )  u.  dom  {
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )
1513, 14eqtrdi 2242 . . 3  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  ( dom  ( H `  P )  u.  dom  {
<. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
16 fof 5477 . . . . . . 7  |-  ( F : om -onto-> A  ->  F : om --> A )
172, 16syl 14 . . . . . 6  |-  ( ph  ->  F : om --> A )
185frechashgf1o 10502 . . . . . . . . 9  |-  N : om
-1-1-onto-> NN0
19 f1ocnv 5514 . . . . . . . . 9  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
20 f1of 5501 . . . . . . . . 9  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
2118, 19, 20mp2b 8 . . . . . . . 8  |-  `' N : NN0 --> om
2221a1i 9 . . . . . . 7  |-  ( ph  ->  `' N : NN0 --> om )
2322, 8ffvelcdmd 5695 . . . . . 6  |-  ( ph  ->  ( `' N `  P )  e.  om )
2417, 23ffvelcdmd 5695 . . . . 5  |-  ( ph  ->  ( F `  ( `' N `  P ) )  e.  A )
25 dmsnopg 5138 . . . . 5  |-  ( ( F `  ( `' N `  P ) )  e.  A  ->  dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  =  { dom  ( H `  P
) } )
2624, 25syl 14 . . . 4  |-  ( ph  ->  dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. }  =  { dom  ( H `  P
) } )
2726uneq2d 3314 . . 3  |-  ( ph  ->  ( dom  ( H `
 P )  u. 
dom  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )  =  ( dom  ( H `
 P )  u. 
{ dom  ( H `  P ) } ) )
2815, 27eqtrd 2226 . 2  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  ( dom  ( H `  P )  u.  { dom  ( H `  P
) } ) )
29 df-suc 4403 . 2  |-  suc  dom  ( H `  P )  =  ( dom  ( H `  P )  u.  { dom  ( H `
 P ) } )
3028, 29eqtr4di 2244 1  |-  ( ph  ->  dom  ( H `  ( P  +  1
) )  =  suc  dom  ( H `  P
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   E.wrex 2473    u. cun 3152   (/)c0 3447   ifcif 3558   {csn 3619   <.cop 3622    |-> cmpt 4091   suc csuc 4397   omcom 4623   `'ccnv 4659   dom cdm 4660   "cima 4663   -->wf 5251   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919    e. cmpo 5921  freccfrec 6445    ^pm cpm 6705   0cc0 7874   1c1 7875    + caddc 7877    - cmin 8192   NN0cn0 9243   ZZcz 9320    seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pm 6707  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522
This theorem is referenced by:  ennnfonelemhf1o  12573
  Copyright terms: Public domain W3C validator