Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvds2ln | Unicode version |
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds2ln |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 993 | . . 3 | |
2 | simpr2 994 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | simpr3 995 | . . 3 | |
5 | 1, 4 | jca 304 | . 2 |
6 | simpll 519 | . . . . 5 | |
7 | 6, 2 | zmulcld 9319 | . . . 4 |
8 | simplr 520 | . . . . 5 | |
9 | 8, 4 | zmulcld 9319 | . . . 4 |
10 | 7, 9 | zaddcld 9317 | . . 3 |
11 | 1, 10 | jca 304 | . 2 |
12 | zmulcl 9244 | . . . . . . . 8 | |
13 | zmulcl 9244 | . . . . . . . 8 | |
14 | 12, 13 | anim12i 336 | . . . . . . 7 |
15 | 14 | an4s 578 | . . . . . 6 |
16 | 15 | expcom 115 | . . . . 5 |
17 | 16 | adantr 274 | . . . 4 |
18 | 17 | imp 123 | . . 3 |
19 | zaddcl 9231 | . . 3 | |
20 | 18, 19 | syl 14 | . 2 |
21 | zcn 9196 | . . . . . . . 8 | |
22 | zcn 9196 | . . . . . . . 8 | |
23 | 21, 22 | anim12i 336 | . . . . . . 7 |
24 | 18, 23 | syl 14 | . . . . . 6 |
25 | 1 | zcnd 9314 | . . . . . . 7 |
26 | 25 | adantr 274 | . . . . . 6 |
27 | adddir 7890 | . . . . . . 7 | |
28 | 27 | 3expa 1193 | . . . . . 6 |
29 | 24, 26, 28 | syl2anc 409 | . . . . 5 |
30 | zcn 9196 | . . . . . . . . 9 | |
31 | 30 | adantr 274 | . . . . . . . 8 |
32 | 31 | adantl 275 | . . . . . . 7 |
33 | zcn 9196 | . . . . . . . 8 | |
34 | 33 | ad3antrrr 484 | . . . . . . 7 |
35 | 32, 34, 26 | mul32d 8051 | . . . . . 6 |
36 | zcn 9196 | . . . . . . . . 9 | |
37 | 36 | adantl 275 | . . . . . . . 8 |
38 | 37 | adantl 275 | . . . . . . 7 |
39 | 8 | zcnd 9314 | . . . . . . . 8 |
40 | 39 | adantr 274 | . . . . . . 7 |
41 | 38, 40, 26 | mul32d 8051 | . . . . . 6 |
42 | 35, 41 | oveq12d 5860 | . . . . 5 |
43 | 32, 26 | mulcld 7919 | . . . . . . 7 |
44 | 43, 34 | mulcomd 7920 | . . . . . 6 |
45 | 38, 26 | mulcld 7919 | . . . . . . 7 |
46 | 45, 40 | mulcomd 7920 | . . . . . 6 |
47 | 44, 46 | oveq12d 5860 | . . . . 5 |
48 | 29, 42, 47 | 3eqtrd 2202 | . . . 4 |
49 | oveq2 5850 | . . . . 5 | |
50 | oveq2 5850 | . . . . 5 | |
51 | 49, 50 | oveqan12d 5861 | . . . 4 |
52 | 48, 51 | sylan9eq 2219 | . . 3 |
53 | 52 | ex 114 | . 2 |
54 | 3, 5, 11, 20, 53 | dvds2lem 11743 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 caddc 7756 cmul 7758 cz 9191 cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-dvds 11728 |
This theorem is referenced by: gcdaddm 11917 dvdsgcd 11945 |
Copyright terms: Public domain | W3C validator |