ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2ln Unicode version

Theorem dvds2ln 11848
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2ln  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( I  x.  M
)  +  ( J  x.  N ) ) ) )

Proof of Theorem dvds2ln
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1004 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  ZZ )
2 simpr2 1005 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
31, 2jca 306 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  M  e.  ZZ ) )
4 simpr3 1006 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
51, 4jca 306 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  N  e.  ZZ ) )
6 simpll 527 . . . . 5  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  I  e.  ZZ )
76, 2zmulcld 9398 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( I  x.  M
)  e.  ZZ )
8 simplr 528 . . . . 5  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  J  e.  ZZ )
98, 4zmulcld 9398 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( J  x.  N
)  e.  ZZ )
107, 9zaddcld 9396 . . 3  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( I  x.  M )  +  ( J  x.  N ) )  e.  ZZ )
111, 10jca 306 . 2  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( K  e.  ZZ  /\  ( ( I  x.  M )  +  ( J  x.  N ) )  e.  ZZ ) )
12 zmulcl 9323 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  I  e.  ZZ )  ->  ( x  x.  I
)  e.  ZZ )
13 zmulcl 9323 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  J  e.  ZZ )  ->  ( y  x.  J
)  e.  ZZ )
1412, 13anim12i 338 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  I  e.  ZZ )  /\  ( y  e.  ZZ  /\  J  e.  ZZ ) )  -> 
( ( x  x.  I )  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) )
1514an4s 588 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( I  e.  ZZ  /\  J  e.  ZZ ) )  -> 
( ( x  x.  I )  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) )
1615expcom 116 . . . . 5  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) ) )
1716adantr 276 . . . 4  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ ) ) )
1817imp 124 . . 3  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  e.  ZZ  /\  (
y  x.  J )  e.  ZZ ) )
19 zaddcl 9310 . . 3  |-  ( ( ( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ )  ->  ( ( x  x.  I )  +  ( y  x.  J
) )  e.  ZZ )
2018, 19syl 14 . 2  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  +  ( y  x.  J ) )  e.  ZZ )
21 zcn 9275 . . . . . . . 8  |-  ( ( x  x.  I )  e.  ZZ  ->  (
x  x.  I )  e.  CC )
22 zcn 9275 . . . . . . . 8  |-  ( ( y  x.  J )  e.  ZZ  ->  (
y  x.  J )  e.  CC )
2321, 22anim12i 338 . . . . . . 7  |-  ( ( ( x  x.  I
)  e.  ZZ  /\  ( y  x.  J
)  e.  ZZ )  ->  ( ( x  x.  I )  e.  CC  /\  ( y  x.  J )  e.  CC ) )
2418, 23syl 14 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  e.  CC  /\  (
y  x.  J )  e.  CC ) )
251zcnd 9393 . . . . . . 7  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  K  e.  CC )
2625adantr 276 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  e.  CC )
27 adddir 7965 . . . . . . 7  |-  ( ( ( x  x.  I
)  e.  CC  /\  ( y  x.  J
)  e.  CC  /\  K  e.  CC )  ->  ( ( ( x  x.  I )  +  ( y  x.  J
) )  x.  K
)  =  ( ( ( x  x.  I
)  x.  K )  +  ( ( y  x.  J )  x.  K ) ) )
28273expa 1204 . . . . . 6  |-  ( ( ( ( x  x.  I )  e.  CC  /\  ( y  x.  J
)  e.  CC )  /\  K  e.  CC )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( ( x  x.  I )  x.  K
)  +  ( ( y  x.  J )  x.  K ) ) )
2924, 26, 28syl2anc 411 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  +  ( y  x.  J ) )  x.  K )  =  ( ( ( x  x.  I )  x.  K )  +  ( ( y  x.  J
)  x.  K ) ) )
30 zcn 9275 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
3130adantr 276 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  CC )
3231adantl 277 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  CC )
33 zcn 9275 . . . . . . . 8  |-  ( I  e.  ZZ  ->  I  e.  CC )
3433ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  I  e.  CC )
3532, 34, 26mul32d 8127 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  I )  x.  K )  =  ( ( x  x.  K )  x.  I
) )
36 zcn 9275 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
3736adantl 277 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  e.  CC )
3837adantl 277 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  y  e.  CC )
398zcnd 9393 . . . . . . . 8  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  J  e.  CC )
4039adantr 276 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  J  e.  CC )
4138, 40, 26mul32d 8127 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
y  x.  J )  x.  K )  =  ( ( y  x.  K )  x.  J
) )
4235, 41oveq12d 5908 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  x.  K )  +  ( ( y  x.  J )  x.  K ) )  =  ( ( ( x  x.  K )  x.  I )  +  ( ( y  x.  K
)  x.  J ) ) )
4332, 26mulcld 7995 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  K )  e.  CC )
4443, 34mulcomd 7996 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  K )  x.  I )  =  ( I  x.  (
x  x.  K ) ) )
4538, 26mulcld 7995 . . . . . . 7  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( y  x.  K )  e.  CC )
4645, 40mulcomd 7996 . . . . . 6  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
y  x.  K )  x.  J )  =  ( J  x.  (
y  x.  K ) ) )
4744, 46oveq12d 5908 . . . . 5  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  x.  I )  +  ( ( y  x.  K )  x.  J ) )  =  ( ( I  x.  ( x  x.  K
) )  +  ( J  x.  ( y  x.  K ) ) ) )
4829, 42, 473eqtrd 2225 . . . 4  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  I
)  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  ( x  x.  K
) )  +  ( J  x.  ( y  x.  K ) ) ) )
49 oveq2 5898 . . . . 5  |-  ( ( x  x.  K )  =  M  ->  (
I  x.  ( x  x.  K ) )  =  ( I  x.  M ) )
50 oveq2 5898 . . . . 5  |-  ( ( y  x.  K )  =  N  ->  ( J  x.  ( y  x.  K ) )  =  ( J  x.  N
) )
5149, 50oveqan12d 5909 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( I  x.  ( x  x.  K ) )  +  ( J  x.  (
y  x.  K ) ) )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) )
5248, 51sylan9eq 2241 . . 3  |-  ( ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( ( x  x.  K )  =  M  /\  (
y  x.  K )  =  N ) )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) )
5352ex 115 . 2  |-  ( ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( ( x  x.  I )  +  ( y  x.  J ) )  x.  K )  =  ( ( I  x.  M
)  +  ( J  x.  N ) ) ) )
543, 5, 11, 20, 53dvds2lem 11827 1  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( I  x.  M
)  +  ( J  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2159   class class class wbr 4017  (class class class)co 5890   CCcc 7826    + caddc 7831    x. cmul 7833   ZZcz 9270    || cdvds 11811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-iota 5192  df-fun 5232  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-inn 8937  df-n0 9194  df-z 9271  df-dvds 11812
This theorem is referenced by:  gcdaddm  12002  dvdsgcd  12030
  Copyright terms: Public domain W3C validator