Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvds2ln | Unicode version |
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds2ln |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 998 | . . 3 | |
2 | simpr2 999 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | simpr3 1000 | . . 3 | |
5 | 1, 4 | jca 304 | . 2 |
6 | simpll 524 | . . . . 5 | |
7 | 6, 2 | zmulcld 9340 | . . . 4 |
8 | simplr 525 | . . . . 5 | |
9 | 8, 4 | zmulcld 9340 | . . . 4 |
10 | 7, 9 | zaddcld 9338 | . . 3 |
11 | 1, 10 | jca 304 | . 2 |
12 | zmulcl 9265 | . . . . . . . 8 | |
13 | zmulcl 9265 | . . . . . . . 8 | |
14 | 12, 13 | anim12i 336 | . . . . . . 7 |
15 | 14 | an4s 583 | . . . . . 6 |
16 | 15 | expcom 115 | . . . . 5 |
17 | 16 | adantr 274 | . . . 4 |
18 | 17 | imp 123 | . . 3 |
19 | zaddcl 9252 | . . 3 | |
20 | 18, 19 | syl 14 | . 2 |
21 | zcn 9217 | . . . . . . . 8 | |
22 | zcn 9217 | . . . . . . . 8 | |
23 | 21, 22 | anim12i 336 | . . . . . . 7 |
24 | 18, 23 | syl 14 | . . . . . 6 |
25 | 1 | zcnd 9335 | . . . . . . 7 |
26 | 25 | adantr 274 | . . . . . 6 |
27 | adddir 7911 | . . . . . . 7 | |
28 | 27 | 3expa 1198 | . . . . . 6 |
29 | 24, 26, 28 | syl2anc 409 | . . . . 5 |
30 | zcn 9217 | . . . . . . . . 9 | |
31 | 30 | adantr 274 | . . . . . . . 8 |
32 | 31 | adantl 275 | . . . . . . 7 |
33 | zcn 9217 | . . . . . . . 8 | |
34 | 33 | ad3antrrr 489 | . . . . . . 7 |
35 | 32, 34, 26 | mul32d 8072 | . . . . . 6 |
36 | zcn 9217 | . . . . . . . . 9 | |
37 | 36 | adantl 275 | . . . . . . . 8 |
38 | 37 | adantl 275 | . . . . . . 7 |
39 | 8 | zcnd 9335 | . . . . . . . 8 |
40 | 39 | adantr 274 | . . . . . . 7 |
41 | 38, 40, 26 | mul32d 8072 | . . . . . 6 |
42 | 35, 41 | oveq12d 5871 | . . . . 5 |
43 | 32, 26 | mulcld 7940 | . . . . . . 7 |
44 | 43, 34 | mulcomd 7941 | . . . . . 6 |
45 | 38, 26 | mulcld 7940 | . . . . . . 7 |
46 | 45, 40 | mulcomd 7941 | . . . . . 6 |
47 | 44, 46 | oveq12d 5871 | . . . . 5 |
48 | 29, 42, 47 | 3eqtrd 2207 | . . . 4 |
49 | oveq2 5861 | . . . . 5 | |
50 | oveq2 5861 | . . . . 5 | |
51 | 49, 50 | oveqan12d 5872 | . . . 4 |
52 | 48, 51 | sylan9eq 2223 | . . 3 |
53 | 52 | ex 114 | . 2 |
54 | 3, 5, 11, 20, 53 | dvds2lem 11765 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 caddc 7777 cmul 7779 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-dvds 11750 |
This theorem is referenced by: gcdaddm 11939 dvdsgcd 11967 |
Copyright terms: Public domain | W3C validator |