| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvds2ln | Unicode version | ||
| Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvds2ln |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1005 |
. . 3
| |
| 2 | simpr2 1006 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | simpr3 1007 |
. . 3
| |
| 5 | 1, 4 | jca 306 |
. 2
|
| 6 | simpll 527 |
. . . . 5
| |
| 7 | 6, 2 | zmulcld 9500 |
. . . 4
|
| 8 | simplr 528 |
. . . . 5
| |
| 9 | 8, 4 | zmulcld 9500 |
. . . 4
|
| 10 | 7, 9 | zaddcld 9498 |
. . 3
|
| 11 | 1, 10 | jca 306 |
. 2
|
| 12 | zmulcl 9425 |
. . . . . . . 8
| |
| 13 | zmulcl 9425 |
. . . . . . . 8
| |
| 14 | 12, 13 | anim12i 338 |
. . . . . . 7
|
| 15 | 14 | an4s 588 |
. . . . . 6
|
| 16 | 15 | expcom 116 |
. . . . 5
|
| 17 | 16 | adantr 276 |
. . . 4
|
| 18 | 17 | imp 124 |
. . 3
|
| 19 | zaddcl 9411 |
. . 3
| |
| 20 | 18, 19 | syl 14 |
. 2
|
| 21 | zcn 9376 |
. . . . . . . 8
| |
| 22 | zcn 9376 |
. . . . . . . 8
| |
| 23 | 21, 22 | anim12i 338 |
. . . . . . 7
|
| 24 | 18, 23 | syl 14 |
. . . . . 6
|
| 25 | 1 | zcnd 9495 |
. . . . . . 7
|
| 26 | 25 | adantr 276 |
. . . . . 6
|
| 27 | adddir 8062 |
. . . . . . 7
| |
| 28 | 27 | 3expa 1205 |
. . . . . 6
|
| 29 | 24, 26, 28 | syl2anc 411 |
. . . . 5
|
| 30 | zcn 9376 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 276 |
. . . . . . . 8
|
| 32 | 31 | adantl 277 |
. . . . . . 7
|
| 33 | zcn 9376 |
. . . . . . . 8
| |
| 34 | 33 | ad3antrrr 492 |
. . . . . . 7
|
| 35 | 32, 34, 26 | mul32d 8224 |
. . . . . 6
|
| 36 | zcn 9376 |
. . . . . . . . 9
| |
| 37 | 36 | adantl 277 |
. . . . . . . 8
|
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 8 | zcnd 9495 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | 38, 40, 26 | mul32d 8224 |
. . . . . 6
|
| 42 | 35, 41 | oveq12d 5961 |
. . . . 5
|
| 43 | 32, 26 | mulcld 8092 |
. . . . . . 7
|
| 44 | 43, 34 | mulcomd 8093 |
. . . . . 6
|
| 45 | 38, 26 | mulcld 8092 |
. . . . . . 7
|
| 46 | 45, 40 | mulcomd 8093 |
. . . . . 6
|
| 47 | 44, 46 | oveq12d 5961 |
. . . . 5
|
| 48 | 29, 42, 47 | 3eqtrd 2241 |
. . . 4
|
| 49 | oveq2 5951 |
. . . . 5
| |
| 50 | oveq2 5951 |
. . . . 5
| |
| 51 | 49, 50 | oveqan12d 5962 |
. . . 4
|
| 52 | 48, 51 | sylan9eq 2257 |
. . 3
|
| 53 | 52 | ex 115 |
. 2
|
| 54 | 3, 5, 11, 20, 53 | dvds2lem 12056 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-dvds 12041 |
| This theorem is referenced by: gcdaddm 12247 dvdsgcd 12275 |
| Copyright terms: Public domain | W3C validator |