| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvds2ln | Unicode version | ||
| Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvds2ln |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1027 |
. . 3
| |
| 2 | simpr2 1028 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | simpr3 1029 |
. . 3
| |
| 5 | 1, 4 | jca 306 |
. 2
|
| 6 | simpll 527 |
. . . . 5
| |
| 7 | 6, 2 | zmulcld 9571 |
. . . 4
|
| 8 | simplr 528 |
. . . . 5
| |
| 9 | 8, 4 | zmulcld 9571 |
. . . 4
|
| 10 | 7, 9 | zaddcld 9569 |
. . 3
|
| 11 | 1, 10 | jca 306 |
. 2
|
| 12 | zmulcl 9496 |
. . . . . . . 8
| |
| 13 | zmulcl 9496 |
. . . . . . . 8
| |
| 14 | 12, 13 | anim12i 338 |
. . . . . . 7
|
| 15 | 14 | an4s 590 |
. . . . . 6
|
| 16 | 15 | expcom 116 |
. . . . 5
|
| 17 | 16 | adantr 276 |
. . . 4
|
| 18 | 17 | imp 124 |
. . 3
|
| 19 | zaddcl 9482 |
. . 3
| |
| 20 | 18, 19 | syl 14 |
. 2
|
| 21 | zcn 9447 |
. . . . . . . 8
| |
| 22 | zcn 9447 |
. . . . . . . 8
| |
| 23 | 21, 22 | anim12i 338 |
. . . . . . 7
|
| 24 | 18, 23 | syl 14 |
. . . . . 6
|
| 25 | 1 | zcnd 9566 |
. . . . . . 7
|
| 26 | 25 | adantr 276 |
. . . . . 6
|
| 27 | adddir 8133 |
. . . . . . 7
| |
| 28 | 27 | 3expa 1227 |
. . . . . 6
|
| 29 | 24, 26, 28 | syl2anc 411 |
. . . . 5
|
| 30 | zcn 9447 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 276 |
. . . . . . . 8
|
| 32 | 31 | adantl 277 |
. . . . . . 7
|
| 33 | zcn 9447 |
. . . . . . . 8
| |
| 34 | 33 | ad3antrrr 492 |
. . . . . . 7
|
| 35 | 32, 34, 26 | mul32d 8295 |
. . . . . 6
|
| 36 | zcn 9447 |
. . . . . . . . 9
| |
| 37 | 36 | adantl 277 |
. . . . . . . 8
|
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 8 | zcnd 9566 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | 38, 40, 26 | mul32d 8295 |
. . . . . 6
|
| 42 | 35, 41 | oveq12d 6018 |
. . . . 5
|
| 43 | 32, 26 | mulcld 8163 |
. . . . . . 7
|
| 44 | 43, 34 | mulcomd 8164 |
. . . . . 6
|
| 45 | 38, 26 | mulcld 8163 |
. . . . . . 7
|
| 46 | 45, 40 | mulcomd 8164 |
. . . . . 6
|
| 47 | 44, 46 | oveq12d 6018 |
. . . . 5
|
| 48 | 29, 42, 47 | 3eqtrd 2266 |
. . . 4
|
| 49 | oveq2 6008 |
. . . . 5
| |
| 50 | oveq2 6008 |
. . . . 5
| |
| 51 | 49, 50 | oveqan12d 6019 |
. . . 4
|
| 52 | 48, 51 | sylan9eq 2282 |
. . 3
|
| 53 | 52 | ex 115 |
. 2
|
| 54 | 3, 5, 11, 20, 53 | dvds2lem 12309 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-dvds 12294 |
| This theorem is referenced by: gcdaddm 12500 dvdsgcd 12528 |
| Copyright terms: Public domain | W3C validator |