ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju1st Unicode version

Theorem eldju1st 7175
Description: The first component of an element of a disjoint union is either  (/) or  1o. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju1st  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )

Proof of Theorem eldju1st
StepHypRef Expression
1 djuss 7174 . 2  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )
2 ssel2 3188 . . 3  |-  ( ( ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B ) )  /\  X  e.  ( A B ) )  ->  X  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
3 xp1st 6253 . . 3  |-  ( X  e.  ( { (/) ,  1o }  X.  ( A  u.  B )
)  ->  ( 1st `  X )  e.  { (/)
,  1o } )
4 elpri 3656 . . 3  |-  ( ( 1st `  X )  e.  { (/) ,  1o }  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )
52, 3, 43syl 17 . 2  |-  ( ( ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B ) )  /\  X  e.  ( A B ) )  ->  (
( 1st `  X
)  =  (/)  \/  ( 1st `  X )  =  1o ) )
61, 5mpan 424 1  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176    u. cun 3164    C_ wss 3166   (/)c0 3460   {cpr 3634    X. cxp 4674   ` cfv 5272   1stc1st 6226   1oc1o 6497   ⊔ cdju 7141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-dju 7142  df-inl 7151  df-inr 7152
This theorem is referenced by:  updjudhf  7183  subctctexmid  15974
  Copyright terms: Public domain W3C validator