ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju1st Unicode version

Theorem eldju1st 7246
Description: The first component of an element of a disjoint union is either  (/) or  1o. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju1st  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )

Proof of Theorem eldju1st
StepHypRef Expression
1 djuss 7245 . 2  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )
2 ssel2 3219 . . 3  |-  ( ( ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B ) )  /\  X  e.  ( A B ) )  ->  X  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
3 xp1st 6317 . . 3  |-  ( X  e.  ( { (/) ,  1o }  X.  ( A  u.  B )
)  ->  ( 1st `  X )  e.  { (/)
,  1o } )
4 elpri 3689 . . 3  |-  ( ( 1st `  X )  e.  { (/) ,  1o }  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )
52, 3, 43syl 17 . 2  |-  ( ( ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B ) )  /\  X  e.  ( A B ) )  ->  (
( 1st `  X
)  =  (/)  \/  ( 1st `  X )  =  1o ) )
61, 5mpan 424 1  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195    C_ wss 3197   (/)c0 3491   {cpr 3667    X. cxp 4717   ` cfv 5318   1stc1st 6290   1oc1o 6561   ⊔ cdju 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6292  df-2nd 6293  df-1o 6568  df-dju 7213  df-inl 7222  df-inr 7223
This theorem is referenced by:  updjudhf  7254  subctctexmid  16395
  Copyright terms: Public domain W3C validator