ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju1st Unicode version

Theorem eldju1st 7048
Description: The first component of an element of a disjoint union is either  (/) or  1o. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju1st  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )

Proof of Theorem eldju1st
StepHypRef Expression
1 djuss 7047 . 2  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )
2 ssel2 3142 . . 3  |-  ( ( ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B ) )  /\  X  e.  ( A B ) )  ->  X  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
3 xp1st 6144 . . 3  |-  ( X  e.  ( { (/) ,  1o }  X.  ( A  u.  B )
)  ->  ( 1st `  X )  e.  { (/)
,  1o } )
4 elpri 3606 . . 3  |-  ( ( 1st `  X )  e.  { (/) ,  1o }  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )
52, 3, 43syl 17 . 2  |-  ( ( ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B ) )  /\  X  e.  ( A B ) )  ->  (
( 1st `  X
)  =  (/)  \/  ( 1st `  X )  =  1o ) )
61, 5mpan 422 1  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =  (/)  \/  ( 1st `  X
)  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141    u. cun 3119    C_ wss 3121   (/)c0 3414   {cpr 3584    X. cxp 4609   ` cfv 5198   1stc1st 6117   1oc1o 6388   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  updjudhf  7056  subctctexmid  14034
  Copyright terms: Public domain W3C validator