ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuss Unicode version

Theorem djuss 6904
Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )

Proof of Theorem djuss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 6903 . . 3  |-  ( x  e.  ( A B )  <-> 
( E. y  e.  A  x  =  (inl
`  y )  \/ 
E. y  e.  B  x  =  (inr `  y
) ) )
2 simpr 109 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  =  (inl `  y )
)
3 df-inl 6881 . . . . . . . . 9  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
4 opeq2 3670 . . . . . . . . 9  |-  ( x  =  y  ->  <. (/) ,  x >.  =  <. (/) ,  y >.
)
5 elex 2666 . . . . . . . . 9  |-  ( y  e.  A  ->  y  e.  _V )
6 0ex 4013 . . . . . . . . . . 11  |-  (/)  e.  _V
7 vex 2658 . . . . . . . . . . 11  |-  y  e. 
_V
86, 7opex 4109 . . . . . . . . . 10  |-  <. (/) ,  y
>.  e.  _V
98a1i 9 . . . . . . . . 9  |-  ( y  e.  A  ->  <. (/) ,  y
>.  e.  _V )
103, 4, 5, 9fvmptd3 5466 . . . . . . . 8  |-  ( y  e.  A  ->  (inl `  y )  =  <. (/)
,  y >. )
1110adantr 272 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  (inl `  y )  =  <. (/)
,  y >. )
122, 11eqtrd 2145 . . . . . 6  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  =  <. (/) ,  y >.
)
13 elun1 3207 . . . . . . . . 9  |-  ( y  e.  A  ->  y  e.  ( A  u.  B
) )
146prid1 3593 . . . . . . . . 9  |-  (/)  e.  { (/)
,  1o }
1513, 14jctil 308 . . . . . . . 8  |-  ( y  e.  A  ->  ( (/) 
e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
1615adantr 272 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  ( (/) 
e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
17 opelxp 4527 . . . . . . 7  |-  ( <. (/)
,  y >.  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) )  <->  ( (/)  e.  { (/)
,  1o }  /\  y  e.  ( A  u.  B ) ) )
1816, 17sylibr 133 . . . . . 6  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  <. (/) ,  y
>.  e.  ( { (/) ,  1o }  X.  ( A  u.  B )
) )
1912, 18eqeltrd 2189 . . . . 5  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
2019rexlimiva 2516 . . . 4  |-  ( E. y  e.  A  x  =  (inl `  y
)  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
21 simpr 109 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  =  (inr `  y )
)
22 df-inr 6882 . . . . . . . . 9  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
23 opeq2 3670 . . . . . . . . 9  |-  ( x  =  y  ->  <. 1o ,  x >.  =  <. 1o , 
y >. )
24 elex 2666 . . . . . . . . 9  |-  ( y  e.  B  ->  y  e.  _V )
25 1oex 6272 . . . . . . . . . . 11  |-  1o  e.  _V
2625, 7opex 4109 . . . . . . . . . 10  |-  <. 1o , 
y >.  e.  _V
2726a1i 9 . . . . . . . . 9  |-  ( y  e.  B  ->  <. 1o , 
y >.  e.  _V )
2822, 23, 24, 27fvmptd3 5466 . . . . . . . 8  |-  ( y  e.  B  ->  (inr `  y )  =  <. 1o ,  y >. )
2928adantr 272 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  (inr `  y )  =  <. 1o ,  y >. )
3021, 29eqtrd 2145 . . . . . 6  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  =  <. 1o ,  y
>. )
31 elun2 3208 . . . . . . . . 9  |-  ( y  e.  B  ->  y  e.  ( A  u.  B
) )
3231adantr 272 . . . . . . . 8  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  y  e.  ( A  u.  B
) )
3325prid2 3594 . . . . . . . 8  |-  1o  e.  {
(/) ,  1o }
3432, 33jctil 308 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  ( 1o  e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
35 opelxp 4527 . . . . . . 7  |-  ( <. 1o ,  y >.  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) )  <->  ( 1o  e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B )
) )
3634, 35sylibr 133 . . . . . 6  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  <. 1o , 
y >.  e.  ( {
(/) ,  1o }  X.  ( A  u.  B
) ) )
3730, 36eqeltrd 2189 . . . . 5  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
3837rexlimiva 2516 . . . 4  |-  ( E. y  e.  B  x  =  (inr `  y
)  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
3920, 38jaoi 688 . . 3  |-  ( ( E. y  e.  A  x  =  (inl `  y
)  \/  E. y  e.  B  x  =  (inr `  y ) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
401, 39sylbi 120 . 2  |-  ( x  e.  ( A B )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
4140ssriv 3065 1  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 680    = wceq 1312    e. wcel 1461   E.wrex 2389   _Vcvv 2655    u. cun 3033    C_ wss 3035   (/)c0 3327   {cpr 3492   <.cop 3494    X. cxp 4495   ` cfv 5079   1oc1o 6257   ⊔ cdju 6871  inlcinl 6879  inrcinr 6880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-1st 5989  df-2nd 5990  df-1o 6264  df-dju 6872  df-inl 6881  df-inr 6882
This theorem is referenced by:  eldju1st  6905
  Copyright terms: Public domain W3C validator