| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuss | Unicode version | ||
| Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djur 7197 |
. . 3
| |
| 2 | simpr 110 |
. . . . . . 7
| |
| 3 | df-inl 7175 |
. . . . . . . . 9
| |
| 4 | opeq2 3834 |
. . . . . . . . 9
| |
| 5 | elex 2788 |
. . . . . . . . 9
| |
| 6 | 0ex 4187 |
. . . . . . . . . . 11
| |
| 7 | vex 2779 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | opex 4291 |
. . . . . . . . . 10
|
| 9 | 8 | a1i 9 |
. . . . . . . . 9
|
| 10 | 3, 4, 5, 9 | fvmptd3 5696 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 2, 11 | eqtrd 2240 |
. . . . . 6
|
| 13 | elun1 3348 |
. . . . . . . . 9
| |
| 14 | 6 | prid1 3749 |
. . . . . . . . 9
|
| 15 | 13, 14 | jctil 312 |
. . . . . . . 8
|
| 16 | 15 | adantr 276 |
. . . . . . 7
|
| 17 | opelxp 4723 |
. . . . . . 7
| |
| 18 | 16, 17 | sylibr 134 |
. . . . . 6
|
| 19 | 12, 18 | eqeltrd 2284 |
. . . . 5
|
| 20 | 19 | rexlimiva 2620 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | df-inr 7176 |
. . . . . . . . 9
| |
| 23 | opeq2 3834 |
. . . . . . . . 9
| |
| 24 | elex 2788 |
. . . . . . . . 9
| |
| 25 | 1oex 6533 |
. . . . . . . . . . 11
| |
| 26 | 25, 7 | opex 4291 |
. . . . . . . . . 10
|
| 27 | 26 | a1i 9 |
. . . . . . . . 9
|
| 28 | 22, 23, 24, 27 | fvmptd3 5696 |
. . . . . . . 8
|
| 29 | 28 | adantr 276 |
. . . . . . 7
|
| 30 | 21, 29 | eqtrd 2240 |
. . . . . 6
|
| 31 | elun2 3349 |
. . . . . . . . 9
| |
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 25 | prid2 3750 |
. . . . . . . 8
|
| 34 | 32, 33 | jctil 312 |
. . . . . . 7
|
| 35 | opelxp 4723 |
. . . . . . 7
| |
| 36 | 34, 35 | sylibr 134 |
. . . . . 6
|
| 37 | 30, 36 | eqeltrd 2284 |
. . . . 5
|
| 38 | 37 | rexlimiva 2620 |
. . . 4
|
| 39 | 20, 38 | jaoi 718 |
. . 3
|
| 40 | 1, 39 | sylbi 121 |
. 2
|
| 41 | 40 | ssriv 3205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: eldju1st 7199 |
| Copyright terms: Public domain | W3C validator |