| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuss | Unicode version | ||
| Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djur 7171 |
. . 3
| |
| 2 | simpr 110 |
. . . . . . 7
| |
| 3 | df-inl 7149 |
. . . . . . . . 9
| |
| 4 | opeq2 3820 |
. . . . . . . . 9
| |
| 5 | elex 2783 |
. . . . . . . . 9
| |
| 6 | 0ex 4171 |
. . . . . . . . . . 11
| |
| 7 | vex 2775 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | opex 4273 |
. . . . . . . . . 10
|
| 9 | 8 | a1i 9 |
. . . . . . . . 9
|
| 10 | 3, 4, 5, 9 | fvmptd3 5673 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 2, 11 | eqtrd 2238 |
. . . . . 6
|
| 13 | elun1 3340 |
. . . . . . . . 9
| |
| 14 | 6 | prid1 3739 |
. . . . . . . . 9
|
| 15 | 13, 14 | jctil 312 |
. . . . . . . 8
|
| 16 | 15 | adantr 276 |
. . . . . . 7
|
| 17 | opelxp 4705 |
. . . . . . 7
| |
| 18 | 16, 17 | sylibr 134 |
. . . . . 6
|
| 19 | 12, 18 | eqeltrd 2282 |
. . . . 5
|
| 20 | 19 | rexlimiva 2618 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | df-inr 7150 |
. . . . . . . . 9
| |
| 23 | opeq2 3820 |
. . . . . . . . 9
| |
| 24 | elex 2783 |
. . . . . . . . 9
| |
| 25 | 1oex 6510 |
. . . . . . . . . . 11
| |
| 26 | 25, 7 | opex 4273 |
. . . . . . . . . 10
|
| 27 | 26 | a1i 9 |
. . . . . . . . 9
|
| 28 | 22, 23, 24, 27 | fvmptd3 5673 |
. . . . . . . 8
|
| 29 | 28 | adantr 276 |
. . . . . . 7
|
| 30 | 21, 29 | eqtrd 2238 |
. . . . . 6
|
| 31 | elun2 3341 |
. . . . . . . . 9
| |
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 25 | prid2 3740 |
. . . . . . . 8
|
| 34 | 32, 33 | jctil 312 |
. . . . . . 7
|
| 35 | opelxp 4705 |
. . . . . . 7
| |
| 36 | 34, 35 | sylibr 134 |
. . . . . 6
|
| 37 | 30, 36 | eqeltrd 2282 |
. . . . 5
|
| 38 | 37 | rexlimiva 2618 |
. . . 4
|
| 39 | 20, 38 | jaoi 718 |
. . 3
|
| 40 | 1, 39 | sylbi 121 |
. 2
|
| 41 | 40 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-dju 7140 df-inl 7149 df-inr 7150 |
| This theorem is referenced by: eldju1st 7173 |
| Copyright terms: Public domain | W3C validator |