| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuss | Unicode version | ||
| Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djur 7236 |
. . 3
| |
| 2 | simpr 110 |
. . . . . . 7
| |
| 3 | df-inl 7214 |
. . . . . . . . 9
| |
| 4 | opeq2 3858 |
. . . . . . . . 9
| |
| 5 | elex 2811 |
. . . . . . . . 9
| |
| 6 | 0ex 4211 |
. . . . . . . . . . 11
| |
| 7 | vex 2802 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | opex 4315 |
. . . . . . . . . 10
|
| 9 | 8 | a1i 9 |
. . . . . . . . 9
|
| 10 | 3, 4, 5, 9 | fvmptd3 5728 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 2, 11 | eqtrd 2262 |
. . . . . 6
|
| 13 | elun1 3371 |
. . . . . . . . 9
| |
| 14 | 6 | prid1 3772 |
. . . . . . . . 9
|
| 15 | 13, 14 | jctil 312 |
. . . . . . . 8
|
| 16 | 15 | adantr 276 |
. . . . . . 7
|
| 17 | opelxp 4749 |
. . . . . . 7
| |
| 18 | 16, 17 | sylibr 134 |
. . . . . 6
|
| 19 | 12, 18 | eqeltrd 2306 |
. . . . 5
|
| 20 | 19 | rexlimiva 2643 |
. . . 4
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | df-inr 7215 |
. . . . . . . . 9
| |
| 23 | opeq2 3858 |
. . . . . . . . 9
| |
| 24 | elex 2811 |
. . . . . . . . 9
| |
| 25 | 1oex 6570 |
. . . . . . . . . . 11
| |
| 26 | 25, 7 | opex 4315 |
. . . . . . . . . 10
|
| 27 | 26 | a1i 9 |
. . . . . . . . 9
|
| 28 | 22, 23, 24, 27 | fvmptd3 5728 |
. . . . . . . 8
|
| 29 | 28 | adantr 276 |
. . . . . . 7
|
| 30 | 21, 29 | eqtrd 2262 |
. . . . . 6
|
| 31 | elun2 3372 |
. . . . . . . . 9
| |
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | 25 | prid2 3773 |
. . . . . . . 8
|
| 34 | 32, 33 | jctil 312 |
. . . . . . 7
|
| 35 | opelxp 4749 |
. . . . . . 7
| |
| 36 | 34, 35 | sylibr 134 |
. . . . . 6
|
| 37 | 30, 36 | eqeltrd 2306 |
. . . . 5
|
| 38 | 37 | rexlimiva 2643 |
. . . 4
|
| 39 | 20, 38 | jaoi 721 |
. . 3
|
| 40 | 1, 39 | sylbi 121 |
. 2
|
| 41 | 40 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-1o 6562 df-dju 7205 df-inl 7214 df-inr 7215 |
| This theorem is referenced by: eldju1st 7238 |
| Copyright terms: Public domain | W3C validator |