Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuss | Unicode version |
Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.) |
Ref | Expression |
---|---|
djuss | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djur 7034 | . . 3 ⊔ inl inr | |
2 | simpr 109 | . . . . . . 7 inl inl | |
3 | df-inl 7012 | . . . . . . . . 9 inl | |
4 | opeq2 3759 | . . . . . . . . 9 | |
5 | elex 2737 | . . . . . . . . 9 | |
6 | 0ex 4109 | . . . . . . . . . . 11 | |
7 | vex 2729 | . . . . . . . . . . 11 | |
8 | 6, 7 | opex 4207 | . . . . . . . . . 10 |
9 | 8 | a1i 9 | . . . . . . . . 9 |
10 | 3, 4, 5, 9 | fvmptd3 5579 | . . . . . . . 8 inl |
11 | 10 | adantr 274 | . . . . . . 7 inl inl |
12 | 2, 11 | eqtrd 2198 | . . . . . 6 inl |
13 | elun1 3289 | . . . . . . . . 9 | |
14 | 6 | prid1 3682 | . . . . . . . . 9 |
15 | 13, 14 | jctil 310 | . . . . . . . 8 |
16 | 15 | adantr 274 | . . . . . . 7 inl |
17 | opelxp 4634 | . . . . . . 7 | |
18 | 16, 17 | sylibr 133 | . . . . . 6 inl |
19 | 12, 18 | eqeltrd 2243 | . . . . 5 inl |
20 | 19 | rexlimiva 2578 | . . . 4 inl |
21 | simpr 109 | . . . . . . 7 inr inr | |
22 | df-inr 7013 | . . . . . . . . 9 inr | |
23 | opeq2 3759 | . . . . . . . . 9 | |
24 | elex 2737 | . . . . . . . . 9 | |
25 | 1oex 6392 | . . . . . . . . . . 11 | |
26 | 25, 7 | opex 4207 | . . . . . . . . . 10 |
27 | 26 | a1i 9 | . . . . . . . . 9 |
28 | 22, 23, 24, 27 | fvmptd3 5579 | . . . . . . . 8 inr |
29 | 28 | adantr 274 | . . . . . . 7 inr inr |
30 | 21, 29 | eqtrd 2198 | . . . . . 6 inr |
31 | elun2 3290 | . . . . . . . . 9 | |
32 | 31 | adantr 274 | . . . . . . . 8 inr |
33 | 25 | prid2 3683 | . . . . . . . 8 |
34 | 32, 33 | jctil 310 | . . . . . . 7 inr |
35 | opelxp 4634 | . . . . . . 7 | |
36 | 34, 35 | sylibr 133 | . . . . . 6 inr |
37 | 30, 36 | eqeltrd 2243 | . . . . 5 inr |
38 | 37 | rexlimiva 2578 | . . . 4 inr |
39 | 20, 38 | jaoi 706 | . . 3 inl inr |
40 | 1, 39 | sylbi 120 | . 2 ⊔ |
41 | 40 | ssriv 3146 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 wceq 1343 wcel 2136 wrex 2445 cvv 2726 cun 3114 wss 3116 c0 3409 cpr 3577 cop 3579 cxp 4602 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: eldju1st 7036 |
Copyright terms: Public domain | W3C validator |