ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuss Unicode version

Theorem djuss 7059
Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )

Proof of Theorem djuss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 7058 . . 3  |-  ( x  e.  ( A B )  <-> 
( E. y  e.  A  x  =  (inl
`  y )  \/ 
E. y  e.  B  x  =  (inr `  y
) ) )
2 simpr 110 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  =  (inl `  y )
)
3 df-inl 7036 . . . . . . . . 9  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
4 opeq2 3775 . . . . . . . . 9  |-  ( x  =  y  ->  <. (/) ,  x >.  =  <. (/) ,  y >.
)
5 elex 2746 . . . . . . . . 9  |-  ( y  e.  A  ->  y  e.  _V )
6 0ex 4125 . . . . . . . . . . 11  |-  (/)  e.  _V
7 vex 2738 . . . . . . . . . . 11  |-  y  e. 
_V
86, 7opex 4223 . . . . . . . . . 10  |-  <. (/) ,  y
>.  e.  _V
98a1i 9 . . . . . . . . 9  |-  ( y  e.  A  ->  <. (/) ,  y
>.  e.  _V )
103, 4, 5, 9fvmptd3 5601 . . . . . . . 8  |-  ( y  e.  A  ->  (inl `  y )  =  <. (/)
,  y >. )
1110adantr 276 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  (inl `  y )  =  <. (/)
,  y >. )
122, 11eqtrd 2208 . . . . . 6  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  =  <. (/) ,  y >.
)
13 elun1 3300 . . . . . . . . 9  |-  ( y  e.  A  ->  y  e.  ( A  u.  B
) )
146prid1 3695 . . . . . . . . 9  |-  (/)  e.  { (/)
,  1o }
1513, 14jctil 312 . . . . . . . 8  |-  ( y  e.  A  ->  ( (/) 
e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
1615adantr 276 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  ( (/) 
e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
17 opelxp 4650 . . . . . . 7  |-  ( <. (/)
,  y >.  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) )  <->  ( (/)  e.  { (/)
,  1o }  /\  y  e.  ( A  u.  B ) ) )
1816, 17sylibr 134 . . . . . 6  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  <. (/) ,  y
>.  e.  ( { (/) ,  1o }  X.  ( A  u.  B )
) )
1912, 18eqeltrd 2252 . . . . 5  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
2019rexlimiva 2587 . . . 4  |-  ( E. y  e.  A  x  =  (inl `  y
)  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
21 simpr 110 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  =  (inr `  y )
)
22 df-inr 7037 . . . . . . . . 9  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
23 opeq2 3775 . . . . . . . . 9  |-  ( x  =  y  ->  <. 1o ,  x >.  =  <. 1o , 
y >. )
24 elex 2746 . . . . . . . . 9  |-  ( y  e.  B  ->  y  e.  _V )
25 1oex 6415 . . . . . . . . . . 11  |-  1o  e.  _V
2625, 7opex 4223 . . . . . . . . . 10  |-  <. 1o , 
y >.  e.  _V
2726a1i 9 . . . . . . . . 9  |-  ( y  e.  B  ->  <. 1o , 
y >.  e.  _V )
2822, 23, 24, 27fvmptd3 5601 . . . . . . . 8  |-  ( y  e.  B  ->  (inr `  y )  =  <. 1o ,  y >. )
2928adantr 276 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  (inr `  y )  =  <. 1o ,  y >. )
3021, 29eqtrd 2208 . . . . . 6  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  =  <. 1o ,  y
>. )
31 elun2 3301 . . . . . . . . 9  |-  ( y  e.  B  ->  y  e.  ( A  u.  B
) )
3231adantr 276 . . . . . . . 8  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  y  e.  ( A  u.  B
) )
3325prid2 3696 . . . . . . . 8  |-  1o  e.  {
(/) ,  1o }
3432, 33jctil 312 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  ( 1o  e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
35 opelxp 4650 . . . . . . 7  |-  ( <. 1o ,  y >.  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) )  <->  ( 1o  e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B )
) )
3634, 35sylibr 134 . . . . . 6  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  <. 1o , 
y >.  e.  ( {
(/) ,  1o }  X.  ( A  u.  B
) ) )
3730, 36eqeltrd 2252 . . . . 5  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
3837rexlimiva 2587 . . . 4  |-  ( E. y  e.  B  x  =  (inr `  y
)  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
3920, 38jaoi 716 . . 3  |-  ( ( E. y  e.  A  x  =  (inl `  y
)  \/  E. y  e.  B  x  =  (inr `  y ) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
401, 39sylbi 121 . 2  |-  ( x  e.  ( A B )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
4140ssriv 3157 1  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2146   E.wrex 2454   _Vcvv 2735    u. cun 3125    C_ wss 3127   (/)c0 3420   {cpr 3590   <.cop 3592    X. cxp 4618   ` cfv 5208   1oc1o 6400   ⊔ cdju 7026  inlcinl 7034  inrcinr 7035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-1st 6131  df-2nd 6132  df-1o 6407  df-dju 7027  df-inl 7036  df-inr 7037
This theorem is referenced by:  eldju1st  7060
  Copyright terms: Public domain W3C validator