ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuss Unicode version

Theorem djuss 7047
Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )

Proof of Theorem djuss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 7046 . . 3  |-  ( x  e.  ( A B )  <-> 
( E. y  e.  A  x  =  (inl
`  y )  \/ 
E. y  e.  B  x  =  (inr `  y
) ) )
2 simpr 109 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  =  (inl `  y )
)
3 df-inl 7024 . . . . . . . . 9  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
4 opeq2 3766 . . . . . . . . 9  |-  ( x  =  y  ->  <. (/) ,  x >.  =  <. (/) ,  y >.
)
5 elex 2741 . . . . . . . . 9  |-  ( y  e.  A  ->  y  e.  _V )
6 0ex 4116 . . . . . . . . . . 11  |-  (/)  e.  _V
7 vex 2733 . . . . . . . . . . 11  |-  y  e. 
_V
86, 7opex 4214 . . . . . . . . . 10  |-  <. (/) ,  y
>.  e.  _V
98a1i 9 . . . . . . . . 9  |-  ( y  e.  A  ->  <. (/) ,  y
>.  e.  _V )
103, 4, 5, 9fvmptd3 5589 . . . . . . . 8  |-  ( y  e.  A  ->  (inl `  y )  =  <. (/)
,  y >. )
1110adantr 274 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  (inl `  y )  =  <. (/)
,  y >. )
122, 11eqtrd 2203 . . . . . 6  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  =  <. (/) ,  y >.
)
13 elun1 3294 . . . . . . . . 9  |-  ( y  e.  A  ->  y  e.  ( A  u.  B
) )
146prid1 3689 . . . . . . . . 9  |-  (/)  e.  { (/)
,  1o }
1513, 14jctil 310 . . . . . . . 8  |-  ( y  e.  A  ->  ( (/) 
e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
1615adantr 274 . . . . . . 7  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  ( (/) 
e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
17 opelxp 4641 . . . . . . 7  |-  ( <. (/)
,  y >.  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) )  <->  ( (/)  e.  { (/)
,  1o }  /\  y  e.  ( A  u.  B ) ) )
1816, 17sylibr 133 . . . . . 6  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  <. (/) ,  y
>.  e.  ( { (/) ,  1o }  X.  ( A  u.  B )
) )
1912, 18eqeltrd 2247 . . . . 5  |-  ( ( y  e.  A  /\  x  =  (inl `  y
) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
2019rexlimiva 2582 . . . 4  |-  ( E. y  e.  A  x  =  (inl `  y
)  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
21 simpr 109 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  =  (inr `  y )
)
22 df-inr 7025 . . . . . . . . 9  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
23 opeq2 3766 . . . . . . . . 9  |-  ( x  =  y  ->  <. 1o ,  x >.  =  <. 1o , 
y >. )
24 elex 2741 . . . . . . . . 9  |-  ( y  e.  B  ->  y  e.  _V )
25 1oex 6403 . . . . . . . . . . 11  |-  1o  e.  _V
2625, 7opex 4214 . . . . . . . . . 10  |-  <. 1o , 
y >.  e.  _V
2726a1i 9 . . . . . . . . 9  |-  ( y  e.  B  ->  <. 1o , 
y >.  e.  _V )
2822, 23, 24, 27fvmptd3 5589 . . . . . . . 8  |-  ( y  e.  B  ->  (inr `  y )  =  <. 1o ,  y >. )
2928adantr 274 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  (inr `  y )  =  <. 1o ,  y >. )
3021, 29eqtrd 2203 . . . . . 6  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  =  <. 1o ,  y
>. )
31 elun2 3295 . . . . . . . . 9  |-  ( y  e.  B  ->  y  e.  ( A  u.  B
) )
3231adantr 274 . . . . . . . 8  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  y  e.  ( A  u.  B
) )
3325prid2 3690 . . . . . . . 8  |-  1o  e.  {
(/) ,  1o }
3432, 33jctil 310 . . . . . . 7  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  ( 1o  e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B ) ) )
35 opelxp 4641 . . . . . . 7  |-  ( <. 1o ,  y >.  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) )  <->  ( 1o  e.  { (/) ,  1o }  /\  y  e.  ( A  u.  B )
) )
3634, 35sylibr 133 . . . . . 6  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  <. 1o , 
y >.  e.  ( {
(/) ,  1o }  X.  ( A  u.  B
) ) )
3730, 36eqeltrd 2247 . . . . 5  |-  ( ( y  e.  B  /\  x  =  (inr `  y
) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B ) ) )
3837rexlimiva 2582 . . . 4  |-  ( E. y  e.  B  x  =  (inr `  y
)  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
3920, 38jaoi 711 . . 3  |-  ( ( E. y  e.  A  x  =  (inl `  y
)  \/  E. y  e.  B  x  =  (inr `  y ) )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
401, 39sylbi 120 . 2  |-  ( x  e.  ( A B )  ->  x  e.  ( { (/) ,  1o }  X.  ( A  u.  B
) ) )
4140ssriv 3151 1  |-  ( A B )  C_  ( { (/) ,  1o }  X.  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141   E.wrex 2449   _Vcvv 2730    u. cun 3119    C_ wss 3121   (/)c0 3414   {cpr 3584   <.cop 3586    X. cxp 4609   ` cfv 5198   1oc1o 6388   ⊔ cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  eldju1st  7048
  Copyright terms: Public domain W3C validator