Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuss | Unicode version |
Description: A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.) |
Ref | Expression |
---|---|
djuss | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djur 7046 | . . 3 ⊔ inl inr | |
2 | simpr 109 | . . . . . . 7 inl inl | |
3 | df-inl 7024 | . . . . . . . . 9 inl | |
4 | opeq2 3766 | . . . . . . . . 9 | |
5 | elex 2741 | . . . . . . . . 9 | |
6 | 0ex 4116 | . . . . . . . . . . 11 | |
7 | vex 2733 | . . . . . . . . . . 11 | |
8 | 6, 7 | opex 4214 | . . . . . . . . . 10 |
9 | 8 | a1i 9 | . . . . . . . . 9 |
10 | 3, 4, 5, 9 | fvmptd3 5589 | . . . . . . . 8 inl |
11 | 10 | adantr 274 | . . . . . . 7 inl inl |
12 | 2, 11 | eqtrd 2203 | . . . . . 6 inl |
13 | elun1 3294 | . . . . . . . . 9 | |
14 | 6 | prid1 3689 | . . . . . . . . 9 |
15 | 13, 14 | jctil 310 | . . . . . . . 8 |
16 | 15 | adantr 274 | . . . . . . 7 inl |
17 | opelxp 4641 | . . . . . . 7 | |
18 | 16, 17 | sylibr 133 | . . . . . 6 inl |
19 | 12, 18 | eqeltrd 2247 | . . . . 5 inl |
20 | 19 | rexlimiva 2582 | . . . 4 inl |
21 | simpr 109 | . . . . . . 7 inr inr | |
22 | df-inr 7025 | . . . . . . . . 9 inr | |
23 | opeq2 3766 | . . . . . . . . 9 | |
24 | elex 2741 | . . . . . . . . 9 | |
25 | 1oex 6403 | . . . . . . . . . . 11 | |
26 | 25, 7 | opex 4214 | . . . . . . . . . 10 |
27 | 26 | a1i 9 | . . . . . . . . 9 |
28 | 22, 23, 24, 27 | fvmptd3 5589 | . . . . . . . 8 inr |
29 | 28 | adantr 274 | . . . . . . 7 inr inr |
30 | 21, 29 | eqtrd 2203 | . . . . . 6 inr |
31 | elun2 3295 | . . . . . . . . 9 | |
32 | 31 | adantr 274 | . . . . . . . 8 inr |
33 | 25 | prid2 3690 | . . . . . . . 8 |
34 | 32, 33 | jctil 310 | . . . . . . 7 inr |
35 | opelxp 4641 | . . . . . . 7 | |
36 | 34, 35 | sylibr 133 | . . . . . 6 inr |
37 | 30, 36 | eqeltrd 2247 | . . . . 5 inr |
38 | 37 | rexlimiva 2582 | . . . 4 inr |
39 | 20, 38 | jaoi 711 | . . 3 inl inr |
40 | 1, 39 | sylbi 120 | . 2 ⊔ |
41 | 40 | ssriv 3151 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 703 wceq 1348 wcel 2141 wrex 2449 cvv 2730 cun 3119 wss 3121 c0 3414 cpr 3584 cop 3586 cxp 4609 cfv 5198 c1o 6388 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: eldju1st 7048 |
Copyright terms: Public domain | W3C validator |