| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp1st | Unicode version | ||
| Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| xp1st |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4691 |
. 2
| |
| 2 | vex 2774 |
. . . . . . 7
| |
| 3 | vex 2774 |
. . . . . . 7
| |
| 4 | 2, 3 | op1std 6233 |
. . . . . 6
|
| 5 | 4 | eleq1d 2273 |
. . . . 5
|
| 6 | 5 | biimpar 297 |
. . . 4
|
| 7 | 6 | adantrr 479 |
. . 3
|
| 8 | 7 | exlimivv 1919 |
. 2
|
| 9 | 1, 8 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fv 5278 df-1st 6225 |
| This theorem is referenced by: disjxp1 6321 xpf1o 6940 xpmapenlem 6945 opabfi 7034 djuf1olem 7154 eldju1st 7172 exmidapne 7371 dfplpq2 7466 dfmpq2 7467 enqbreq2 7469 enqdc1 7474 mulpipq2 7483 preqlu 7584 elnp1st2nd 7588 cauappcvgprlemladd 7770 elreal2 7942 cnref1o 9771 frecuzrdgrrn 10551 frec2uzrdg 10552 frecuzrdgrcl 10553 frecuzrdgsuc 10557 frecuzrdgrclt 10558 frecuzrdgg 10559 frecuzrdgsuctlem 10566 seq3val 10603 seqvalcd 10604 fsum2dlemstep 11687 fisumcom2 11691 fprod2dlemstep 11875 fprodcom2fi 11879 eucalgval 12318 eucalginv 12320 eucalglt 12321 eucalg 12323 sqpweven 12439 2sqpwodd 12440 ctiunctlemudc 12750 xpsff1o 13123 tx2cn 14684 txdis 14691 txhmeo 14733 xmetxp 14921 xmetxpbl 14922 xmettxlem 14923 xmettx 14924 lgsquadlemofi 15495 lgsquadlem1 15496 lgsquadlem2 15497 |
| Copyright terms: Public domain | W3C validator |