ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1st Unicode version

Theorem xp1st 6250
Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp1st  |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e.  B )

Proof of Theorem xp1st
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4691 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. b E. c ( A  = 
<. b ,  c >.  /\  ( b  e.  B  /\  c  e.  C
) ) )
2 vex 2774 . . . . . . 7  |-  b  e. 
_V
3 vex 2774 . . . . . . 7  |-  c  e. 
_V
42, 3op1std 6233 . . . . . 6  |-  ( A  =  <. b ,  c
>.  ->  ( 1st `  A
)  =  b )
54eleq1d 2273 . . . . 5  |-  ( A  =  <. b ,  c
>.  ->  ( ( 1st `  A )  e.  B  <->  b  e.  B ) )
65biimpar 297 . . . 4  |-  ( ( A  =  <. b ,  c >.  /\  b  e.  B )  ->  ( 1st `  A )  e.  B )
76adantrr 479 . . 3  |-  ( ( A  =  <. b ,  c >.  /\  (
b  e.  B  /\  c  e.  C )
)  ->  ( 1st `  A )  e.  B
)
87exlimivv 1919 . 2  |-  ( E. b E. c ( A  =  <. b ,  c >.  /\  (
b  e.  B  /\  c  e.  C )
)  ->  ( 1st `  A )  e.  B
)
91, 8sylbi 121 1  |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   <.cop 3635    X. cxp 4672   ` cfv 5270   1stc1st 6223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fv 5278  df-1st 6225
This theorem is referenced by:  disjxp1  6321  xpf1o  6940  xpmapenlem  6945  opabfi  7034  djuf1olem  7154  eldju1st  7172  exmidapne  7371  dfplpq2  7466  dfmpq2  7467  enqbreq2  7469  enqdc1  7474  mulpipq2  7483  preqlu  7584  elnp1st2nd  7588  cauappcvgprlemladd  7770  elreal2  7942  cnref1o  9771  frecuzrdgrrn  10551  frec2uzrdg  10552  frecuzrdgrcl  10553  frecuzrdgsuc  10557  frecuzrdgrclt  10558  frecuzrdgg  10559  frecuzrdgsuctlem  10566  seq3val  10603  seqvalcd  10604  fsum2dlemstep  11687  fisumcom2  11691  fprod2dlemstep  11875  fprodcom2fi  11879  eucalgval  12318  eucalginv  12320  eucalglt  12321  eucalg  12323  sqpweven  12439  2sqpwodd  12440  ctiunctlemudc  12750  xpsff1o  13123  tx2cn  14684  txdis  14691  txhmeo  14733  xmetxp  14921  xmetxpbl  14922  xmettxlem  14923  xmettx  14924  lgsquadlemofi  15495  lgsquadlem1  15496  lgsquadlem2  15497
  Copyright terms: Public domain W3C validator