![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldju1st | GIF version |
Description: The first component of an element of a disjoint union is either ∅ or 1o. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
eldju1st | ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuss 7131 | . 2 ⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | |
2 | ssel2 3175 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) ∧ 𝑋 ∈ (𝐴 ⊔ 𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴 ∪ 𝐵))) | |
3 | xp1st 6220 | . . 3 ⊢ (𝑋 ∈ ({∅, 1o} × (𝐴 ∪ 𝐵)) → (1st ‘𝑋) ∈ {∅, 1o}) | |
4 | elpri 3642 | . . 3 ⊢ ((1st ‘𝑋) ∈ {∅, 1o} → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) | |
5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) ∧ 𝑋 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
6 | 1, 5 | mpan 424 | 1 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 ⊆ wss 3154 ∅c0 3447 {cpr 3620 × cxp 4658 ‘cfv 5255 1st c1st 6193 1oc1o 6464 ⊔ cdju 7098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1st 6195 df-2nd 6196 df-1o 6471 df-dju 7099 df-inl 7108 df-inr 7109 |
This theorem is referenced by: updjudhf 7140 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |