![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldju1st | GIF version |
Description: The first component of an element of a disjoint union is either ∅ or 1o. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
eldju1st | ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuss 7083 | . 2 ⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | |
2 | ssel2 3162 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) ∧ 𝑋 ∈ (𝐴 ⊔ 𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴 ∪ 𝐵))) | |
3 | xp1st 6180 | . . 3 ⊢ (𝑋 ∈ ({∅, 1o} × (𝐴 ∪ 𝐵)) → (1st ‘𝑋) ∈ {∅, 1o}) | |
4 | elpri 3627 | . . 3 ⊢ ((1st ‘𝑋) ∈ {∅, 1o} → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) | |
5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) ∧ 𝑋 ∈ (𝐴 ⊔ 𝐵)) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
6 | 1, 5 | mpan 424 | 1 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1363 ∈ wcel 2158 ∪ cun 3139 ⊆ wss 3141 ∅c0 3434 {cpr 3605 × cxp 4636 ‘cfv 5228 1st c1st 6153 1oc1o 6424 ⊔ cdju 7050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-suc 4383 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-1st 6155 df-2nd 6156 df-1o 6431 df-dju 7051 df-inl 7060 df-inr 7061 |
This theorem is referenced by: updjudhf 7092 subctctexmid 15104 |
Copyright terms: Public domain | W3C validator |