ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju1st GIF version

Theorem eldju1st 7173
Description: The first component of an element of a disjoint union is either or 1o. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju1st (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))

Proof of Theorem eldju1st
StepHypRef Expression
1 djuss 7172 . 2 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
2 ssel2 3188 . . 3 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴𝐵)))
3 xp1st 6251 . . 3 (𝑋 ∈ ({∅, 1o} × (𝐴𝐵)) → (1st𝑋) ∈ {∅, 1o})
4 elpri 3656 . . 3 ((1st𝑋) ∈ {∅, 1o} → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
52, 3, 43syl 17 . 2 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
61, 5mpan 424 1 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2176  cun 3164  wss 3166  c0 3460  {cpr 3634   × cxp 4673  cfv 5271  1st c1st 6224  1oc1o 6495  cdju 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-dju 7140  df-inl 7149  df-inr 7150
This theorem is referenced by:  updjudhf  7181  subctctexmid  15937
  Copyright terms: Public domain W3C validator