ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju1st GIF version

Theorem eldju1st 7206
Description: The first component of an element of a disjoint union is either or 1o. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju1st (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))

Proof of Theorem eldju1st
StepHypRef Expression
1 djuss 7205 . 2 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
2 ssel2 3199 . . 3 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴𝐵)))
3 xp1st 6281 . . 3 (𝑋 ∈ ({∅, 1o} × (𝐴𝐵)) → (1st𝑋) ∈ {∅, 1o})
4 elpri 3669 . . 3 ((1st𝑋) ∈ {∅, 1o} → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
52, 3, 43syl 17 . 2 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
61, 5mpan 424 1 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 712   = wceq 1375  wcel 2180  cun 3175  wss 3177  c0 3471  {cpr 3647   × cxp 4694  cfv 5294  1st c1st 6254  1oc1o 6525  cdju 7172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-1st 6256  df-2nd 6257  df-1o 6532  df-dju 7173  df-inl 7182  df-inr 7183
This theorem is referenced by:  updjudhf  7214  subctctexmid  16277
  Copyright terms: Public domain W3C validator