ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp6 Unicode version

Theorem elxp6 6067
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5026. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )

Proof of Theorem elxp6
StepHypRef Expression
1 elex 2697 . 2  |-  ( A  e.  ( B  X.  C )  ->  A  e.  _V )
2 opexg 4150 . . . 4  |-  ( ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  _V )
32adantl 275 . . 3  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  _V )
4 eleq1 2202 . . . 4  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  _V  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _V ) )
54adantr 274 . . 3  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  ( A  e.  _V  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _V ) )
63, 5mpbird 166 . 2  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  A  e.  _V )
7 1stvalg 6040 . . . . . 6  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )
8 2ndvalg 6041 . . . . . 6  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )
97, 8opeq12d 3713 . . . . 5  |-  ( A  e.  _V  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. U. dom  { A } ,  U. ran  { A } >. )
109eqeq2d 2151 . . . 4  |-  ( A  e.  _V  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. 
<->  A  =  <. U. dom  { A } ,  U. ran  { A } >. ) )
117eleq1d 2208 . . . . 5  |-  ( A  e.  _V  ->  (
( 1st `  A
)  e.  B  <->  U. dom  { A }  e.  B
) )
128eleq1d 2208 . . . . 5  |-  ( A  e.  _V  ->  (
( 2nd `  A
)  e.  C  <->  U. ran  { A }  e.  C
) )
1311, 12anbi12d 464 . . . 4  |-  ( A  e.  _V  ->  (
( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  <->  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
1410, 13anbi12d 464 . . 3  |-  ( A  e.  _V  ->  (
( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
15 elxp4 5026 . . 3  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
1614, 15syl6rbbr 198 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) )
171, 6, 16pm5.21nii 693 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2686   {csn 3527   <.cop 3530   U.cuni 3736    X. cxp 4537   dom cdm 4539   ran crn 4540   ` cfv 5123   1stc1st 6036   2ndc2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by:  elxp7  6068  oprssdmm  6069  eqopi  6070  1st2nd2  6073  eldju2ndl  6957  eldju2ndr  6958  qredeu  11778  qnumdencl  11865  tx1cn  12438  tx2cn  12439  psmetxrge0  12501  xmetxpbl  12677
  Copyright terms: Public domain W3C validator