ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp6 Unicode version

Theorem elxp6 6278
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5189. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )

Proof of Theorem elxp6
StepHypRef Expression
1 elex 2788 . 2  |-  ( A  e.  ( B  X.  C )  ->  A  e.  _V )
2 opexg 4290 . . . 4  |-  ( ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  _V )
32adantl 277 . . 3  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  _V )
4 eleq1 2270 . . . 4  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  _V  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _V ) )
54adantr 276 . . 3  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  ( A  e.  _V  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _V ) )
63, 5mpbird 167 . 2  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  A  e.  _V )
7 elxp4 5189 . . 3  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
8 1stvalg 6251 . . . . . 6  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )
9 2ndvalg 6252 . . . . . 6  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )
108, 9opeq12d 3841 . . . . 5  |-  ( A  e.  _V  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. U. dom  { A } ,  U. ran  { A } >. )
1110eqeq2d 2219 . . . 4  |-  ( A  e.  _V  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. 
<->  A  =  <. U. dom  { A } ,  U. ran  { A } >. ) )
128eleq1d 2276 . . . . 5  |-  ( A  e.  _V  ->  (
( 1st `  A
)  e.  B  <->  U. dom  { A }  e.  B
) )
139eleq1d 2276 . . . . 5  |-  ( A  e.  _V  ->  (
( 2nd `  A
)  e.  C  <->  U. ran  { A }  e.  C
) )
1412, 13anbi12d 473 . . . 4  |-  ( A  e.  _V  ->  (
( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  <->  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
1511, 14anbi12d 473 . . 3  |-  ( A  e.  _V  ->  (
( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
167, 15bitr4id 199 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) )
171, 6, 16pm5.21nii 706 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   <.cop 3646   U.cuni 3864    X. cxp 4691   dom cdm 4693   ran crn 4694   ` cfv 5290   1stc1st 6247   2ndc2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-1st 6249  df-2nd 6250
This theorem is referenced by:  elxp7  6279  oprssdmm  6280  eqopi  6281  1st2nd2  6284  eldju2ndl  7200  eldju2ndr  7201  aptap  8758  qredeu  12534  qnumdencl  12624  tx1cn  14856  tx2cn  14857  psmetxrge0  14919  xmetxpbl  15095
  Copyright terms: Public domain W3C validator