| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp6 | Unicode version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5189. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| elxp6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | opexg 4290 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | eleq1 2270 |
. . . 4
| |
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | 3, 5 | mpbird 167 |
. 2
|
| 7 | elxp4 5189 |
. . 3
| |
| 8 | 1stvalg 6251 |
. . . . . 6
| |
| 9 | 2ndvalg 6252 |
. . . . . 6
| |
| 10 | 8, 9 | opeq12d 3841 |
. . . . 5
|
| 11 | 10 | eqeq2d 2219 |
. . . 4
|
| 12 | 8 | eleq1d 2276 |
. . . . 5
|
| 13 | 9 | eleq1d 2276 |
. . . . 5
|
| 14 | 12, 13 | anbi12d 473 |
. . . 4
|
| 15 | 11, 14 | anbi12d 473 |
. . 3
|
| 16 | 7, 15 | bitr4id 199 |
. 2
|
| 17 | 1, 6, 16 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: elxp7 6279 oprssdmm 6280 eqopi 6281 1st2nd2 6284 eldju2ndl 7200 eldju2ndr 7201 aptap 8758 qredeu 12534 qnumdencl 12624 tx1cn 14856 tx2cn 14857 psmetxrge0 14919 xmetxpbl 15095 |
| Copyright terms: Public domain | W3C validator |