Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elxp6 | Unicode version |
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5091. (Contributed by NM, 9-Oct-2004.) |
Ref | Expression |
---|---|
elxp6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | opexg 4206 | . . . 4 | |
3 | 2 | adantl 275 | . . 3 |
4 | eleq1 2229 | . . . 4 | |
5 | 4 | adantr 274 | . . 3 |
6 | 3, 5 | mpbird 166 | . 2 |
7 | elxp4 5091 | . . 3 | |
8 | 1stvalg 6110 | . . . . . 6 | |
9 | 2ndvalg 6111 | . . . . . 6 | |
10 | 8, 9 | opeq12d 3766 | . . . . 5 |
11 | 10 | eqeq2d 2177 | . . . 4 |
12 | 8 | eleq1d 2235 | . . . . 5 |
13 | 9 | eleq1d 2235 | . . . . 5 |
14 | 12, 13 | anbi12d 465 | . . . 4 |
15 | 11, 14 | anbi12d 465 | . . 3 |
16 | 7, 15 | bitr4id 198 | . 2 |
17 | 1, 6, 16 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 csn 3576 cop 3579 cuni 3789 cxp 4602 cdm 4604 crn 4605 cfv 5188 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: elxp7 6138 oprssdmm 6139 eqopi 6140 1st2nd2 6143 eldju2ndl 7037 eldju2ndr 7038 qredeu 12029 qnumdencl 12119 tx1cn 12909 tx2cn 12910 psmetxrge0 12972 xmetxpbl 13148 |
Copyright terms: Public domain | W3C validator |