ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp6 Unicode version

Theorem elxp6 6255
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5170. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )

Proof of Theorem elxp6
StepHypRef Expression
1 elex 2783 . 2  |-  ( A  e.  ( B  X.  C )  ->  A  e.  _V )
2 opexg 4272 . . . 4  |-  ( ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  _V )
32adantl 277 . . 3  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  _V )
4 eleq1 2268 . . . 4  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  _V  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _V ) )
54adantr 276 . . 3  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  ( A  e.  _V  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  _V ) )
63, 5mpbird 167 . 2  |-  ( ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  ->  A  e.  _V )
7 elxp4 5170 . . 3  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
8 1stvalg 6228 . . . . . 6  |-  ( A  e.  _V  ->  ( 1st `  A )  = 
U. dom  { A } )
9 2ndvalg 6229 . . . . . 6  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )
108, 9opeq12d 3827 . . . . 5  |-  ( A  e.  _V  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. U. dom  { A } ,  U. ran  { A } >. )
1110eqeq2d 2217 . . . 4  |-  ( A  e.  _V  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. 
<->  A  =  <. U. dom  { A } ,  U. ran  { A } >. ) )
128eleq1d 2274 . . . . 5  |-  ( A  e.  _V  ->  (
( 1st `  A
)  e.  B  <->  U. dom  { A }  e.  B
) )
139eleq1d 2274 . . . . 5  |-  ( A  e.  _V  ->  (
( 2nd `  A
)  e.  C  <->  U. ran  { A }  e.  C
) )
1412, 13anbi12d 473 . . . 4  |-  ( A  e.  _V  ->  (
( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C )  <->  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
1511, 14anbi12d 473 . . 3  |-  ( A  e.  _V  ->  (
( A  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
167, 15bitr4id 199 . 2  |-  ( A  e.  _V  ->  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) )
171, 6, 16pm5.21nii 706 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633   <.cop 3636   U.cuni 3850    X. cxp 4673   dom cdm 4675   ran crn 4676   ` cfv 5271   1stc1st 6224   2ndc2nd 6225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226  df-2nd 6227
This theorem is referenced by:  elxp7  6256  oprssdmm  6257  eqopi  6258  1st2nd2  6261  eldju2ndl  7174  eldju2ndr  7175  aptap  8723  qredeu  12419  qnumdencl  12509  tx1cn  14741  tx2cn  14742  psmetxrge0  14804  xmetxpbl  14980
  Copyright terms: Public domain W3C validator