| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp6 | Unicode version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5157. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| elxp6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | opexg 4261 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | eleq1 2259 |
. . . 4
| |
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | 3, 5 | mpbird 167 |
. 2
|
| 7 | elxp4 5157 |
. . 3
| |
| 8 | 1stvalg 6200 |
. . . . . 6
| |
| 9 | 2ndvalg 6201 |
. . . . . 6
| |
| 10 | 8, 9 | opeq12d 3816 |
. . . . 5
|
| 11 | 10 | eqeq2d 2208 |
. . . 4
|
| 12 | 8 | eleq1d 2265 |
. . . . 5
|
| 13 | 9 | eleq1d 2265 |
. . . . 5
|
| 14 | 12, 13 | anbi12d 473 |
. . . 4
|
| 15 | 11, 14 | anbi12d 473 |
. . 3
|
| 16 | 7, 15 | bitr4id 199 |
. 2
|
| 17 | 1, 6, 16 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-1st 6198 df-2nd 6199 |
| This theorem is referenced by: elxp7 6228 oprssdmm 6229 eqopi 6230 1st2nd2 6233 eldju2ndl 7138 eldju2ndr 7139 aptap 8677 qredeu 12265 qnumdencl 12355 tx1cn 14505 tx2cn 14506 psmetxrge0 14568 xmetxpbl 14744 |
| Copyright terms: Public domain | W3C validator |