ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinl Unicode version

Theorem 1stinl 7149
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  (/) )

Proof of Theorem 1stinl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7122 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
)
3 opeq2 3810 . . . . 5  |-  ( x  =  X  ->  <. (/) ,  x >.  =  <. (/) ,  X >. )
43adantl 277 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. (/) ,  x >.  = 
<. (/) ,  X >. )
5 elex 2774 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 0ex 4161 . . . . 5  |-  (/)  e.  _V
7 opexg 4262 . . . . 5  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  <. (/) ,  X >.  e.  _V )
86, 7mpan 424 . . . 4  |-  ( X  e.  V  ->  <. (/) ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5645 . . 3  |-  ( X  e.  V  ->  (inl `  X )  =  <. (/)
,  X >. )
109fveq2d 5565 . 2  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  ( 1st `  <. (/) ,  X >. ) )
11 op1stg 6217 . . 3  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  ( 1st `  <. (/) ,  X >. )  =  (/) )
126, 11mpan 424 . 2  |-  ( X  e.  V  ->  ( 1st `  <. (/) ,  X >. )  =  (/) )
1310, 12eqtrd 2229 1  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   (/)c0 3451   <.cop 3626    |-> cmpt 4095   ` cfv 5259   1stc1st 6205  inlcinl 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fv 5267  df-1st 6207  df-inl 7122
This theorem is referenced by:  djune  7153  updjudhcoinlf  7155  subctctexmid  15731
  Copyright terms: Public domain W3C validator