ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinl Unicode version

Theorem 1stinl 7202
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  (/) )

Proof of Theorem 1stinl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7175 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
)
3 opeq2 3834 . . . . 5  |-  ( x  =  X  ->  <. (/) ,  x >.  =  <. (/) ,  X >. )
43adantl 277 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. (/) ,  x >.  = 
<. (/) ,  X >. )
5 elex 2788 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 0ex 4187 . . . . 5  |-  (/)  e.  _V
7 opexg 4290 . . . . 5  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  <. (/) ,  X >.  e.  _V )
86, 7mpan 424 . . . 4  |-  ( X  e.  V  ->  <. (/) ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5683 . . 3  |-  ( X  e.  V  ->  (inl `  X )  =  <. (/)
,  X >. )
109fveq2d 5603 . 2  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  ( 1st `  <. (/) ,  X >. ) )
11 op1stg 6259 . . 3  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  ( 1st `  <. (/) ,  X >. )  =  (/) )
126, 11mpan 424 . 2  |-  ( X  e.  V  ->  ( 1st `  <. (/) ,  X >. )  =  (/) )
1310, 12eqtrd 2240 1  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776   (/)c0 3468   <.cop 3646    |-> cmpt 4121   ` cfv 5290   1stc1st 6247  inlcinl 7173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-1st 6249  df-inl 7175
This theorem is referenced by:  djune  7206  updjudhcoinlf  7208  subctctexmid  16139
  Copyright terms: Public domain W3C validator