ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinl Unicode version

Theorem 1stinl 7004
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  (/) )

Proof of Theorem 1stinl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 6977 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
)
3 opeq2 3738 . . . . 5  |-  ( x  =  X  ->  <. (/) ,  x >.  =  <. (/) ,  X >. )
43adantl 275 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. (/) ,  x >.  = 
<. (/) ,  X >. )
5 elex 2720 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 0ex 4087 . . . . 5  |-  (/)  e.  _V
7 opexg 4183 . . . . 5  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  <. (/) ,  X >.  e.  _V )
86, 7mpan 421 . . . 4  |-  ( X  e.  V  ->  <. (/) ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5542 . . 3  |-  ( X  e.  V  ->  (inl `  X )  =  <. (/)
,  X >. )
109fveq2d 5465 . 2  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  ( 1st `  <. (/) ,  X >. ) )
11 op1stg 6088 . . 3  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  ( 1st `  <. (/) ,  X >. )  =  (/) )
126, 11mpan 421 . 2  |-  ( X  e.  V  ->  ( 1st `  <. (/) ,  X >. )  =  (/) )
1310, 12eqtrd 2187 1  |-  ( X  e.  V  ->  ( 1st `  (inl `  X
) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 2125   _Vcvv 2709   (/)c0 3390   <.cop 3559    |-> cmpt 4021   ` cfv 5163   1stc1st 6076  inlcinl 6975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-iota 5128  df-fun 5165  df-fv 5171  df-1st 6078  df-inl 6977
This theorem is referenced by:  djune  7008  updjudhcoinlf  7010  subctctexmid  13512
  Copyright terms: Public domain W3C validator