ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicod Unicode version

Theorem elicod 10371
Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
elicod.a  |-  ( ph  ->  A  e.  RR* )
elicod.b  |-  ( ph  ->  B  e.  RR* )
elicod.3  |-  ( ph  ->  C  e.  RR* )
elicod.4  |-  ( ph  ->  A  <_  C )
elicod.5  |-  ( ph  ->  C  <  B )
Assertion
Ref Expression
elicod  |-  ( ph  ->  C  e.  ( A [,) B ) )

Proof of Theorem elicod
StepHypRef Expression
1 elicod.3 . 2  |-  ( ph  ->  C  e.  RR* )
2 elicod.4 . 2  |-  ( ph  ->  A  <_  C )
3 elicod.5 . 2  |-  ( ph  ->  C  <  B )
4 elicod.a . . 3  |-  ( ph  ->  A  e.  RR* )
5 elicod.b . . 3  |-  ( ph  ->  B  e.  RR* )
6 elico1 10015 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B
) ) )
74, 5, 6syl2anc 411 . 2  |-  ( ph  ->  ( C  e.  ( A [,) B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) ) )
81, 2, 3, 7mpbir3and 1182 1  |-  ( ph  ->  C  e.  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RR*cxr 8077    < clt 8078    <_ cle 8079   [,)cico 9982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ico 9986
This theorem is referenced by:  fprodge1  11821
  Copyright terms: Public domain W3C validator