ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicod Unicode version

Theorem elicod 10336
Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
elicod.a  |-  ( ph  ->  A  e.  RR* )
elicod.b  |-  ( ph  ->  B  e.  RR* )
elicod.3  |-  ( ph  ->  C  e.  RR* )
elicod.4  |-  ( ph  ->  A  <_  C )
elicod.5  |-  ( ph  ->  C  <  B )
Assertion
Ref Expression
elicod  |-  ( ph  ->  C  e.  ( A [,) B ) )

Proof of Theorem elicod
StepHypRef Expression
1 elicod.3 . 2  |-  ( ph  ->  C  e.  RR* )
2 elicod.4 . 2  |-  ( ph  ->  A  <_  C )
3 elicod.5 . 2  |-  ( ph  ->  C  <  B )
4 elicod.a . . 3  |-  ( ph  ->  A  e.  RR* )
5 elicod.b . . 3  |-  ( ph  ->  B  e.  RR* )
6 elico1 9992 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B
) ) )
74, 5, 6syl2anc 411 . 2  |-  ( ph  ->  ( C  e.  ( A [,) B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) ) )
81, 2, 3, 7mpbir3and 1182 1  |-  ( ph  ->  C  e.  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4030  (class class class)co 5919   RR*cxr 8055    < clt 8056    <_ cle 8057   [,)cico 9959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ico 9963
This theorem is referenced by:  fprodge1  11785
  Copyright terms: Public domain W3C validator