ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicod Unicode version

Theorem elicod 10479
Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
elicod.a  |-  ( ph  ->  A  e.  RR* )
elicod.b  |-  ( ph  ->  B  e.  RR* )
elicod.3  |-  ( ph  ->  C  e.  RR* )
elicod.4  |-  ( ph  ->  A  <_  C )
elicod.5  |-  ( ph  ->  C  <  B )
Assertion
Ref Expression
elicod  |-  ( ph  ->  C  e.  ( A [,) B ) )

Proof of Theorem elicod
StepHypRef Expression
1 elicod.3 . 2  |-  ( ph  ->  C  e.  RR* )
2 elicod.4 . 2  |-  ( ph  ->  A  <_  C )
3 elicod.5 . 2  |-  ( ph  ->  C  <  B )
4 elicod.a . . 3  |-  ( ph  ->  A  e.  RR* )
5 elicod.b . . 3  |-  ( ph  ->  B  e.  RR* )
6 elico1 10115 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B
) ) )
74, 5, 6syl2anc 411 . 2  |-  ( ph  ->  ( C  e.  ( A [,) B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) ) )
81, 2, 3, 7mpbir3and 1204 1  |-  ( ph  ->  C  e.  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   RR*cxr 8176    < clt 8177    <_ cle 8178   [,)cico 10082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ico 10086
This theorem is referenced by:  fprodge1  12145
  Copyright terms: Public domain W3C validator