![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elicod | GIF version |
Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
Ref | Expression |
---|---|
elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | elico1 9983 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
7 | 4, 5, 6 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
8 | 1, 2, 3, 7 | mpbir3and 1182 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5914 ℝ*cxr 8047 < clt 8048 ≤ cle 8049 [,)cico 9950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4567 ax-cnex 7957 ax-resscn 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4322 df-xp 4663 df-rel 4664 df-cnv 4665 df-co 4666 df-dm 4667 df-iota 5211 df-fun 5252 df-fv 5258 df-ov 5917 df-oprab 5918 df-mpo 5919 df-pnf 8050 df-mnf 8051 df-xr 8052 df-ico 9954 |
This theorem is referenced by: fprodge1 11776 |
Copyright terms: Public domain | W3C validator |