HomeHome Intuitionistic Logic Explorer
Theorem List (p. 106 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10501-10600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmodqabs2 10501 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqcyc 10502 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  <  B ) )  ->  ( ( A  +  ( N  x.  B ) )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqcyc2 10503 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  <  B ) )  ->  ( ( A  -  ( B  x.  N ) )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqadd1 10504 Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  0  <  D )   &    |-  ( ph  ->  ( A  mod  D )  =  ( B 
 mod  D ) )   =>    |-  ( ph  ->  ( ( A  +  C )  mod  D )  =  ( ( B  +  C )  mod  D ) )
 
Theoremmodqaddabs 10505 Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( ( A 
 mod  C )  +  ( B  mod  C ) ) 
 mod  C )  =  ( ( A  +  B )  mod  C ) )
 
Theoremmodqaddmod 10506 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the same modulus. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  +  B )  mod  M )  =  ( ( A  +  B )  mod  M ) )
 
Theoremmulqaddmodid 10507 The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M ) ) )  ->  ( ( ( N  x.  M )  +  A )  mod  M )  =  A )
 
Theoremmulp1mod1 10508 The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>=
 `  2 ) ) 
 ->  ( ( ( N  x.  A )  +  1 )  mod  N )  =  1 )
 
Theoremmodqmuladd 10509* Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  B  e.  (
 0 [,) M ) )   &    |-  ( ph  ->  M  e.  QQ )   &    |-  ( ph  ->  0  <  M )   =>    |-  ( ph  ->  ( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( (
 k  x.  M )  +  B ) ) )
 
Theoremmodqmuladdim 10510* Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( ( A  mod  M )  =  B  ->  E. k  e.  ZZ  A  =  ( ( k  x.  M )  +  B ) ) )
 
Theoremmodqmuladdnn0 10511* Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  ( ( A  mod  M )  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
 
Theoremqnegmod 10512 The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N ) 
 ->  ( -u A  mod  N )  =  ( ( N  -  A )  mod  N ) )
 
Theoremm1modnnsub1 10513 Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
 |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  -  1 ) )
 
Theoremm1modge3gt1 10514 Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
 |-  ( M  e.  ( ZZ>=
 `  3 )  -> 
 1  <  ( -u 1  mod  M ) )
 
Theoremaddmodid 10515 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
 |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( ( M  +  A )  mod  M )  =  A )
 
Theoremaddmodidr 10516 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( ( A  +  M )  mod  M )  =  A )
 
Theoremmodqadd2mod 10517 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod  M ) )
 
Theoremmodqm1p1mod0 10518 If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( ( A  mod  M )  =  ( M  -  1 )  ->  ( ( A  +  1 )  mod  M )  =  0 ) )
 
Theoremmodqltm1p1mod 10519 If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  ( A  mod  M )  < 
 ( M  -  1
 ) )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  +  1 )  mod  M )  =  ( ( A 
 mod  M )  +  1 ) )
 
Theoremmodqmul1 10520 Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  0  <  D )   &    |-  ( ph  ->  ( A  mod  D )  =  ( B 
 mod  D ) )   =>    |-  ( ph  ->  ( ( A  x.  C )  mod  D )  =  ( ( B  x.  C )  mod  D ) )
 
Theoremmodqmul12d 10521 Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  x.  C )  mod  E )  =  ( ( B  x.  D )  mod  E ) )
 
Theoremmodqnegd 10522 Negation property of the modulo operation. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  0  <  C )   &    |-  ( ph  ->  ( A  mod  C )  =  ( B  mod  C ) )   =>    |-  ( ph  ->  ( -u A  mod  C )  =  ( -u B  mod  C ) )
 
Theoremmodqadd12d 10523 Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  +  C )  mod  E )  =  ( ( B  +  D )  mod  E ) )
 
Theoremmodqsub12d 10524 Subtraction property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  -  C )  mod  E )  =  ( ( B  -  D )  mod  E ) )
 
Theoremmodqsubmod 10525 The difference of a number modulo a modulus and another number equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  -  B )  mod  M )  =  ( ( A  -  B )  mod  M ) )
 
Theoremmodqsubmodmod 10526 The difference of a number modulo a modulus and another number modulo the same modulus equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  -  ( B  mod  M ) ) 
 mod  M )  =  ( ( A  -  B )  mod  M ) )
 
Theoremq2txmodxeq0 10527 Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( X  e.  QQ  /\  0  <  X )  ->  ( ( 2  x.  X )  mod  X )  =  0 )
 
Theoremq2submod 10528 If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B 
 <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )
 
Theoremmodifeq2int 10529 If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  ( 2  x.  B ) )  ->  ( A  mod  B )  =  if ( A  <  B ,  A ,  ( A  -  B ) ) )
 
Theoremmodaddmodup 10530 The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  ( ( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodaddmodlo 10531 The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodqmulmod 10532 The product of a rational number modulo a modulus and an integer equals the product of the rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  ZZ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  x.  B )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodqmulmodr 10533 The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  x.  ( B  mod  M ) )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodqaddmulmod 10534 The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  C  e.  ZZ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  +  ( ( B  mod  M )  x.  C ) )  mod  M )  =  ( ( A  +  ( B  x.  C ) )  mod  M ) )
 
Theoremmodqdi 10535 Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  mod  C ) )  =  ( ( A  x.  B )  mod  ( A  x.  C ) ) )
 
Theoremmodqsubdir 10536 Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) ) )
 
Theoremmodqeqmodmin 10537 A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( A  mod  M )  =  ( ( A  -  M )  mod  M ) )
 
Theoremmodfzo0difsn 10538* For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( (
 0..^ N )  \  { J } ) ) 
 ->  E. i  e.  (
 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
 
Theoremmodsumfzodifsn 10539 The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N )  \  { J } ) )
 
Theoremmodlteq 10540 Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N ) ) 
 ->  ( ( I  mod  N )  =  ( J 
 mod  N )  <->  I  =  J ) )
 
Theoremaddmodlteq 10541 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
4.6.3  Miscellaneous theorems about integers
 
Theoremfrec2uz0d 10542* The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  ( G `  (/) )  =  C )
 
Theoremfrec2uzzd 10543* The value of  G (see frec2uz0d 10542) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  A )  e. 
 ZZ )
 
Theoremfrec2uzsucd 10544* The value of  G (see frec2uz0d 10542) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `
  A )  +  1 ) )
 
Theoremfrec2uzuzd 10545* The value  G (see frec2uz0d 10542) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  A )  e.  ( ZZ>= `  C )
 )
 
Theoremfrec2uzltd 10546* Less-than relation for  G (see frec2uz0d 10542). (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B ) ) )
 
Theoremfrec2uzlt2d 10547* The mapping  G (see frec2uz0d 10542) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `
  B ) ) )
 
Theoremfrec2uzrand 10548* Range of  G (see frec2uz0d 10542). (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  ran  G  =  ( ZZ>= `  C )
 )
 
Theoremfrec2uzf1od 10549*  G (see frec2uz0d 10542) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  G : om
 -1-1-onto-> ( ZZ>= `  C )
 )
 
Theoremfrec2uzisod 10550*  G (see frec2uz0d 10542) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  G  Isom  _E  ,  <  ( om ,  ( ZZ>= `  C ) ) )
 
Theoremfrecuzrdgrrn 10551* The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 
S. (Contributed by Jim Kingdon, 28-Mar-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ( ph  /\  D  e.  om )  ->  ( R `  D )  e.  ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrec2uzrdg 10552* A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function 
F ( x ,  y ) and initial value  A. This lemma shows that evaluating  R at an element of  om gives an ordered pair whose first element is the index (translated from  om to  ( ZZ>= `  C )). See comment in frec2uz0d 10542 which describes  G and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B ) ) >. )
 
Theoremfrecuzrdgrcl 10553* The function  R (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 1-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  R : om --> ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrecuzrdglem 10554* A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )   =>    |-  ( ph  ->  <. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) )
 >.  e.  ran  R )
 
Theoremfrecuzrdgtcl 10555* The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10542 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 26-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ph  ->  T :
 ( ZZ>= `  C ) --> S )
 
Theoremfrecuzrdg0 10556* Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10542 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 27-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ph  ->  ( T `  C )  =  A )
 
Theoremfrecuzrdgsuc 10557* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10542 for the description of  G as the mapping from 
om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 28-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C )
 )  ->  ( T `  ( B  +  1 ) )  =  ( B F ( T `
  B ) ) )
 
Theoremfrecuzrdgrclt 10558* The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of  S. Similar to frecuzrdgrcl 10553 except that  S and  T need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  R : om --> ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrecuzrdgg 10559* Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating  R at a natural number gives an ordered pair whose first element is the mapping of that natural number via  G. (Contributed by Jim Kingdon, 23-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  N  e.  om )   &    |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  C )   =>    |-  ( ph  ->  ( 1st `  ( R `  N ) )  =  ( G `  N ) )
 
Theoremfrecuzrdgdomlem 10560* The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C ) )
 
Theoremfrecuzrdgdom 10561* The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C ) )
 
Theoremfrecuzrdgfunlem 10562* The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  Fun  ran  R )
 
Theoremfrecuzrdgfun 10563* The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  Fun  ran  R )
 
Theoremfrecuzrdgtclt 10564* The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ph  ->  P :
 ( ZZ>= `  C ) --> S )
 
Theoremfrecuzrdg0t 10565* Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ph  ->  ( P `  C )  =  A )
 
Theoremfrecuzrdgsuctlem 10566* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10542 for the description of  G as the mapping from  om to  ( ZZ>= `  C ). (Contributed by Jim Kingdon, 29-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C ) )  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `  B ) ) )
 
Theoremfrecuzrdgsuct 10567* Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C )
 )  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `
  B ) ) )
 
Theoremuzenom 10568 An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  Z  ~~  om )
 
Theoremfrecfzennn 10569 The cardinality of a finite set of sequential integers. (See frec2uz0d 10542 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( N  e.  NN0  ->  ( 1 ... N ) 
 ~~  ( `' G `  N ) )
 
Theoremfrecfzen2 10570 The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( M ... N ) 
 ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
 
Theoremfrechashgf1o 10571  G maps  om one-to-one onto  NN0. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  G : om -1-1-onto-> NN0
 
Theoremfrec2uzled 10572* The mapping  G (see frec2uz0d 10542) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  C_  B  <->  ( G `  A )  <_  ( G `
  B ) ) )
 
Theoremfzfig 10573 A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  e.  Fin )
 
Theoremfzfigd 10574 Deduction form of fzfig 10573. (Contributed by Jim Kingdon, 21-May-2020.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M ... N )  e.  Fin )
 
Theoremfzofig 10575 Half-open integer sets are finite. (Contributed by Jim Kingdon, 21-May-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
 
Theoremnn0ennn 10576 The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
 |- 
 NN0  ~~  NN
 
Theoremnnenom 10577 The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of natural numbers as ordinals). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |- 
 NN  ~~  om
 
Theoremnnct 10578  NN is dominated by  om. (Contributed by Thierry Arnoux, 29-Dec-2016.)
 |- 
 NN  ~<_  om
 
Theoremuzennn 10579 An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( M  e.  ZZ  ->  ( ZZ>= `  M )  ~~  NN )
 
Theoremxnn0nnen 10580 The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
 |- NN0*  ~~  NN
 
Theoremfnn0nninf 10581* A function from  NN0 into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   =>    |-  ( F  o.  `' G ) : NN0 -->
 
Theoremfxnn0nninf 10582* A function from NN0* into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7225 instead of infnninfOLD 7226. More generally, this theorem and most theorems in this section could use an extended  G defined by  G  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  <. om , +oo >. ) and  F  =  ( n  e.  suc  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) as in nnnninf2 7228.
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  I :NN0* -->
 
Theorem0tonninf 10583* The mapping of zero into ℕ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I `  0
 )  =  ( x  e.  om  |->  (/) )
 
Theorem1tonninf 10584* The mapping of one into ℕ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I `  1
 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
 
Theoreminftonninf 10585* The mapping of +oo into ℕ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I ` +oo )  =  ( x  e.  om  |->  1o )
 
Theoremnninfinf 10586 is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.)
 |- 
 om  ~<_
 
4.6.4  Strong induction over upper sets of integers
 
Theoremuzsinds 10587* Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  ( ZZ>= `  M )  ->  ( A. y  e.  ( M ... ( x  -  1
 ) ) ps  ->  ph ) )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ch )
 
Theoremnnsinds 10588* Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  NN  ->  (
 A. y  e.  (
 1 ... ( x  -  1 ) ) ps 
 ->  ph ) )   =>    |-  ( N  e.  NN  ->  ch )
 
Theoremnn0sinds 10589* Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  NN0  ->  ( A. y  e.  (
 0 ... ( x  -  1 ) ) ps 
 ->  ph ) )   =>    |-  ( N  e.  NN0 
 ->  ch )
 
4.6.5  The infinite sequence builder "seq"
 
Syntaxcseq 10590 Extend class notation with recursive sequence builder.
 class  seq M (  .+  ,  F )
 
Definitiondf-seqfrec 10591* Define a general-purpose operation that builds a recursive sequence (i.e., a function on an upper integer set such as  NN or  NN0) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by seqf 10607, seq3-1 10605 and seq3p1 10608. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation  +, an input sequence  F with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence  seq 1 (  +  ,  F ) with values 1, 3/2, 7/4, 15/8,.., so that  (  seq 1
(  +  ,  F
) `  1 )  =  1,  (  seq 1 (  +  ,  F ) `  2
)  = 3/2, etc. In other words,  seq M (  +  ,  F ) transforms a sequence  F into an infinite series. 
seq M (  +  ,  F )  ~~>  2 means "the sum of F(n) from n = M to infinity is 2". Since limits are unique (climuni 11546), by climdm 11548 the "sum of F(n) from n = 1 to infinity" can be expressed as  (  ~~>  `  seq 1
(  +  ,  F
) ) (provided the sequence converges) and evaluates to 2 in this example.

Internally, the frec function generates as its values a set of ordered pairs starting at 
<. M ,  ( F `
 M ) >., with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain.

(Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.)

 |- 
 seq M (  .+  ,  F )  =  ran frec ( ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( y 
 .+  ( F `  ( x  +  1
 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )
 
Theoremseqex 10592 Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |- 
 seq M (  .+  ,  F )  e.  _V
 
Theoremseqeq1 10593 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
 
Theoremseqeq2 10594 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  (  .+  =  Q  ->  seq M (  .+  ,  F )  =  seq M ( Q ,  F ) )
 
Theoremseqeq3 10595 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  ( F  =  G  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
 
Theoremseqeq1d 10596 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq A (  .+  ,  F )  =  seq B ( 
 .+  ,  F )
 )
 
Theoremseqeq2d 10597 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq M ( A ,  F )  =  seq M ( B ,  F ) )
 
Theoremseqeq3d 10598 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M ( 
 .+  ,  B )
 )
 
Theoremseqeq123d 10599 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  M  =  N )   &    |-  ( ph  ->  .+  =  Q )   &    |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )
 
Theoremnfseq 10600 Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x M   &    |-  F/_ x  .+   &    |-  F/_ x F   =>    |-  F/_ x  seq M (  .+  ,  F )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >