![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elopabi | GIF version |
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elopabi.1 | ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) |
elopabi.2 | ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
elopabi | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4564 | . . . 4 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1st2nd 5951 | . . . 4 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
3 | 1, 2 | mpan 415 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
4 | id 19 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
5 | 3, 4 | eqeltrrd 2165 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
6 | 1stexg 5938 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (1st ‘𝐴) ∈ V) | |
7 | 2ndexg 5939 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (2nd ‘𝐴) ∈ V) | |
8 | elopabi.1 | . . . 4 ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) | |
9 | elopabi.2 | . . . 4 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) | |
10 | 8, 9 | opelopabg 4095 | . . 3 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
11 | 6, 7, 10 | syl2anc 403 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
12 | 5, 11 | mpbid 145 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1289 ∈ wcel 1438 Vcvv 2619 〈cop 3449 {copab 3898 Rel wrel 4443 ‘cfv 5015 1st c1st 5909 2nd c2nd 5910 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fo 5021 df-fv 5023 df-1st 5911 df-2nd 5912 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |