| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elopabi | GIF version | ||
| Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| elopabi.1 | ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) |
| elopabi.2 | ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elopabi | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 4793 | . . . 4 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1st2nd 6248 | . . . 4 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 4 | id 19 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 5 | 3, 4 | eqeltrrd 2274 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 6 | 1stexg 6234 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (1st ‘𝐴) ∈ V) | |
| 7 | 2ndexg 6235 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (2nd ‘𝐴) ∈ V) | |
| 8 | elopabi.1 | . . . 4 ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) | |
| 9 | elopabi.2 | . . . 4 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) | |
| 10 | 8, 9 | opelopabg 4303 | . . 3 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| 11 | 6, 7, 10 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| 12 | 5, 11 | mpbid 147 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3626 {copab 4094 Rel wrel 4669 ‘cfv 5259 1st c1st 6205 2nd c2nd 6206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fo 5265 df-fv 5267 df-1st 6207 df-2nd 6208 |
| This theorem is referenced by: exmidapne 7343 aprcl 8690 aptap 8694 |
| Copyright terms: Public domain | W3C validator |