ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopabi GIF version

Theorem elopabi 6093
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1 (𝑥 = (1st𝐴) → (𝜑𝜓))
elopabi.2 (𝑦 = (2nd𝐴) → (𝜓𝜒))
Assertion
Ref Expression
elopabi (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem elopabi
StepHypRef Expression
1 relopab 4666 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 1st2nd 6079 . . . 4 ((Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
31, 2mpan 420 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
4 id 19 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
53, 4eqeltrrd 2217 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6 1stexg 6065 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (1st𝐴) ∈ V)
7 2ndexg 6066 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (2nd𝐴) ∈ V)
8 elopabi.1 . . . 4 (𝑥 = (1st𝐴) → (𝜑𝜓))
9 elopabi.2 . . . 4 (𝑦 = (2nd𝐴) → (𝜓𝜒))
108, 9opelopabg 4190 . . 3 (((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V) → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
116, 7, 10syl2anc 408 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
125, 11mpbid 146 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wcel 1480  Vcvv 2686  cop 3530  {copab 3988  Rel wrel 4544  cfv 5123  1st c1st 6036  2nd c2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by:  aprcl  8408
  Copyright terms: Public domain W3C validator