| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elopabi | GIF version | ||
| Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| elopabi.1 | ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) |
| elopabi.2 | ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elopabi | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 4822 | . . . 4 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1st2nd 6290 | . . . 4 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 4 | id 19 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 5 | 3, 4 | eqeltrrd 2285 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 6 | 1stexg 6276 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (1st ‘𝐴) ∈ V) | |
| 7 | 2ndexg 6277 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (2nd ‘𝐴) ∈ V) | |
| 8 | elopabi.1 | . . . 4 ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) | |
| 9 | elopabi.2 | . . . 4 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) | |
| 10 | 8, 9 | opelopabg 4332 | . . 3 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| 11 | 6, 7, 10 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| 12 | 5, 11 | mpbid 147 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 Vcvv 2776 〈cop 3646 {copab 4120 Rel wrel 4698 ‘cfv 5290 1st c1st 6247 2nd c2nd 6248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fo 5296 df-fv 5298 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: exmidapne 7407 aprcl 8754 aptap 8758 |
| Copyright terms: Public domain | W3C validator |