ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzfz Unicode version

Theorem eluzfz 9955
Description: Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
eluzfz  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  K  e.  ( M ... N ) )

Proof of Theorem eluzfz
StepHypRef Expression
1 elfzuzb 9954 . 2  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
21biimpri 132 1  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  ->  K  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   ` cfv 5188  (class class class)co 5842   ZZ>=cuz 9466   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-neg 8072  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  eluzfz1  9966  eluzfz2  9967  elfz1end  9990  4fvwrd4  10075
  Copyright terms: Public domain W3C validator