| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuz | Unicode version | ||
| Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10097 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-neg 8203 df-z 9330 df-uz 9605 df-fz 10087 |
| This theorem is referenced by: elfzel1 10102 elfzelz 10103 elfzle1 10105 eluzfz2b 10111 fzsplit2 10128 fzsplit 10129 fzopth 10139 fzss1 10141 fzss2 10142 fzssuz 10143 fzp1elp1 10153 uzsplit 10170 elfzmlbm 10209 fzosplit 10256 infssuzex 10326 seq3feq2 10571 seq3feq 10575 ser3mono 10582 seq3caopr3 10586 iseqf1olemkle 10592 iseqf1olemklt 10593 iseqf1olemnab 10596 iseqf1olemqk 10602 iseqf1olemjpcl 10603 iseqf1olemqpcl 10604 iseqf1olemfvp 10605 seq3f1olemqsumkj 10606 seq3f1olemqsumk 10607 seq3f1olemqsum 10608 seq3f1olemstep 10609 seq3f1oleml 10611 seq3f1o 10612 seqf1oglem2 10615 seq3z 10623 ser0 10628 ser3le 10632 seq3coll 10937 climub 11512 sumrbdclem 11545 fsum3cvg 11546 fsum3ser 11565 fsump1i 11601 fsum0diaglem 11608 iserabs 11643 isumsplit 11659 isum1p 11660 geosergap 11674 mertenslemi1 11703 prodf1 11710 prodfap0 11713 prodfrecap 11714 prodfdivap 11715 prodrbdclem 11739 fproddccvg 11740 fprodntrivap 11752 fprodabs 11784 fprodeq0 11785 nninfctlemfo 12218 prmind2 12299 prmdvdsfz 12318 isprm5lem 12320 eulerthlemrprm 12408 eulerthlema 12409 pcfac 12530 mersenne 15259 lgsdilem2 15303 cvgcmp2nlemabs 15703 |
| Copyright terms: Public domain | W3C validator |