![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzuz | Unicode version |
Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 10021 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-neg 8133 df-z 9256 df-uz 9531 df-fz 10011 |
This theorem is referenced by: elfzel1 10026 elfzelz 10027 elfzle1 10029 eluzfz2b 10035 fzsplit2 10052 fzsplit 10053 fzopth 10063 fzss1 10065 fzss2 10066 fzssuz 10067 fzp1elp1 10077 uzsplit 10094 elfzmlbm 10133 fzosplit 10179 seq3feq2 10472 seq3feq 10474 ser3mono 10480 seq3caopr3 10483 iseqf1olemkle 10486 iseqf1olemklt 10487 iseqf1olemnab 10490 iseqf1olemqk 10496 iseqf1olemjpcl 10497 iseqf1olemqpcl 10498 iseqf1olemfvp 10499 seq3f1olemqsumkj 10500 seq3f1olemqsumk 10501 seq3f1olemqsum 10502 seq3f1olemstep 10503 seq3f1oleml 10505 seq3f1o 10506 seq3z 10513 ser0 10516 ser3le 10520 seq3coll 10824 climub 11354 sumrbdclem 11387 fsum3cvg 11388 fsum3ser 11407 fsump1i 11443 fsum0diaglem 11450 iserabs 11485 isumsplit 11501 isum1p 11502 geosergap 11516 mertenslemi1 11545 prodf1 11552 prodfap0 11555 prodfrecap 11556 prodfdivap 11557 prodrbdclem 11581 fproddccvg 11582 fprodntrivap 11594 fprodabs 11626 fprodeq0 11627 infssuzex 11952 prmind2 12122 prmdvdsfz 12141 isprm5lem 12143 eulerthlemrprm 12231 eulerthlema 12232 pcfac 12350 lgsdilem2 14522 cvgcmp2nlemabs 14865 |
Copyright terms: Public domain | W3C validator |