| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuz | Unicode version | ||
| Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10183 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-neg 8288 df-z 9415 df-uz 9691 df-fz 10173 |
| This theorem is referenced by: elfzel1 10188 elfzelz 10189 elfzle1 10191 eluzfz2b 10197 fzsplit2 10214 fzsplit 10215 fzopth 10225 fzss1 10227 fzss2 10228 fzssuz 10229 fzp1elp1 10239 uzsplit 10256 elfzmlbm 10295 fzosplit 10343 infssuzex 10420 seq3feq2 10665 seq3feq 10669 ser3mono 10676 seq3caopr3 10680 iseqf1olemkle 10686 iseqf1olemklt 10687 iseqf1olemnab 10690 iseqf1olemqk 10696 iseqf1olemjpcl 10697 iseqf1olemqpcl 10698 iseqf1olemfvp 10699 seq3f1olemqsumkj 10700 seq3f1olemqsumk 10701 seq3f1olemqsum 10702 seq3f1olemstep 10703 seq3f1oleml 10705 seq3f1o 10706 seqf1oglem2 10709 seq3z 10717 ser0 10722 ser3le 10726 seq3coll 11031 swrdval2 11149 swrdswrd 11203 pfxccatin12 11231 pfxccatpfx2 11235 climub 11821 sumrbdclem 11854 fsum3cvg 11855 fsum3ser 11874 fsump1i 11910 fsum0diaglem 11917 iserabs 11952 isumsplit 11968 isum1p 11969 geosergap 11983 mertenslemi1 12012 prodf1 12019 prodfap0 12022 prodfrecap 12023 prodfdivap 12024 prodrbdclem 12048 fproddccvg 12049 fprodntrivap 12061 fprodabs 12093 fprodeq0 12094 nninfctlemfo 12527 prmind2 12608 prmdvdsfz 12627 isprm5lem 12629 eulerthlemrprm 12717 eulerthlema 12718 pcfac 12839 mersenne 15636 lgsdilem2 15680 cvgcmp2nlemabs 16311 |
| Copyright terms: Public domain | W3C validator |