![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzuz | Unicode version |
Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 10088 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-neg 8195 df-z 9321 df-uz 9596 df-fz 10078 |
This theorem is referenced by: elfzel1 10093 elfzelz 10094 elfzle1 10096 eluzfz2b 10102 fzsplit2 10119 fzsplit 10120 fzopth 10130 fzss1 10132 fzss2 10133 fzssuz 10134 fzp1elp1 10144 uzsplit 10161 elfzmlbm 10200 fzosplit 10247 seq3feq2 10550 seq3feq 10554 ser3mono 10561 seq3caopr3 10565 iseqf1olemkle 10571 iseqf1olemklt 10572 iseqf1olemnab 10575 iseqf1olemqk 10581 iseqf1olemjpcl 10582 iseqf1olemqpcl 10583 iseqf1olemfvp 10584 seq3f1olemqsumkj 10585 seq3f1olemqsumk 10586 seq3f1olemqsum 10587 seq3f1olemstep 10588 seq3f1oleml 10590 seq3f1o 10591 seqf1oglem2 10594 seq3z 10602 ser0 10607 ser3le 10611 seq3coll 10916 climub 11490 sumrbdclem 11523 fsum3cvg 11524 fsum3ser 11543 fsump1i 11579 fsum0diaglem 11586 iserabs 11621 isumsplit 11637 isum1p 11638 geosergap 11652 mertenslemi1 11681 prodf1 11688 prodfap0 11691 prodfrecap 11692 prodfdivap 11693 prodrbdclem 11717 fproddccvg 11718 fprodntrivap 11730 fprodabs 11762 fprodeq0 11763 infssuzex 12089 nninfctlemfo 12180 prmind2 12261 prmdvdsfz 12280 isprm5lem 12282 eulerthlemrprm 12370 eulerthlema 12371 pcfac 12491 lgsdilem2 15193 cvgcmp2nlemabs 15592 |
Copyright terms: Public domain | W3C validator |