![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzuz | Unicode version |
Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 9432 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-neg 7654 df-z 8749 df-uz 9018 df-fz 9423 |
This theorem is referenced by: elfzel1 9437 elfzelz 9438 elfzle1 9439 eluzfz2b 9445 fzsplit2 9462 fzsplit 9463 fzopth 9472 fzss1 9474 fzss2 9475 fzssuz 9476 fzp1elp1 9485 uzsplit 9502 elfzmlbm 9538 fzosplit 9584 iseqfeq2 9887 seq3feq2 9889 iseqfeq 9892 isermono 9902 iseqsplit 9904 iseqcaopr3 9906 iseqf1olemkle 9909 iseqf1olemklt 9910 iseqf1olemnab 9913 iseqf1olemqk 9919 iseqf1olemjpcl 9920 iseqf1olemqpcl 9921 iseqf1olemfvp 9922 seq3f1olemqsumkj 9923 seq3f1olemqsumk 9924 seq3f1olemqsum 9925 seq3f1olemstep 9926 seq3f1oleml 9928 seq3f1o 9929 iseqz 9939 iser0 9943 ser0 9945 ser3le 9949 iseqcoll 10243 climub 10729 isumrblem 10761 fisumcvg 10762 fsum3cvg 10763 fisumser 10786 fsump1i 10823 fsum0diaglem 10830 iserabs 10865 isumsplit 10881 isum1p 10882 geosergap 10896 mertenslemi1 10925 infssuzex 11219 prmind2 11376 prmdvdsfz 11394 |
Copyright terms: Public domain | W3C validator |