| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuz | Unicode version | ||
| Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10223 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-neg 8328 df-z 9455 df-uz 9731 df-fz 10213 |
| This theorem is referenced by: elfzel1 10228 elfzelz 10229 elfzle1 10231 eluzfz2b 10237 fzsplit2 10254 fzsplit 10255 fzopth 10265 fzss1 10267 fzss2 10268 fzssuz 10269 fzp1elp1 10279 uzsplit 10296 elfzmlbm 10335 fzosplit 10383 infssuzex 10461 seq3feq2 10706 seq3feq 10710 ser3mono 10717 seq3caopr3 10721 iseqf1olemkle 10727 iseqf1olemklt 10728 iseqf1olemnab 10731 iseqf1olemqk 10737 iseqf1olemjpcl 10738 iseqf1olemqpcl 10739 iseqf1olemfvp 10740 seq3f1olemqsumkj 10741 seq3f1olemqsumk 10742 seq3f1olemqsum 10743 seq3f1olemstep 10744 seq3f1oleml 10746 seq3f1o 10747 seqf1oglem2 10750 seq3z 10758 ser0 10763 ser3le 10767 seq3coll 11072 swrdval2 11191 swrdswrd 11245 pfxccatin12 11273 pfxccatpfx2 11277 climub 11863 sumrbdclem 11896 fsum3cvg 11897 fsum3ser 11916 fsump1i 11952 fsum0diaglem 11959 iserabs 11994 isumsplit 12010 isum1p 12011 geosergap 12025 mertenslemi1 12054 prodf1 12061 prodfap0 12064 prodfrecap 12065 prodfdivap 12066 prodrbdclem 12090 fproddccvg 12091 fprodntrivap 12103 fprodabs 12135 fprodeq0 12136 nninfctlemfo 12569 prmind2 12650 prmdvdsfz 12669 isprm5lem 12671 eulerthlemrprm 12759 eulerthlema 12760 pcfac 12881 mersenne 15679 lgsdilem2 15723 cvgcmp2nlemabs 16430 |
| Copyright terms: Public domain | W3C validator |