| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eluzfz1 | Unicode version | ||
| Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| eluzfz1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluzel2 9606 | 
. . 3
 | |
| 2 | uzid 9615 | 
. . 3
 | |
| 3 | 1, 2 | syl 14 | 
. 2
 | 
| 4 | eluzfz 10095 | 
. 2
 | |
| 5 | 3, 4 | mpancom 422 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-neg 8200 df-z 9327 df-uz 9602 df-fz 10084 | 
| This theorem is referenced by: elfz3 10109 fzm 10113 fzopth 10136 fz01or 10186 exfzdc 10316 seq3clss 10563 seqfveqg 10570 seq3fveq 10571 seq3shft2 10573 seqshft2g 10574 monoord 10577 monoord2 10578 seqcaopr3g 10584 iseqf1olemqk 10599 seq3f1olemqsumkj 10603 seq3f1olemp 10607 seqf1oglem2a 10610 seqf1oglem2 10612 seq3id3 10616 seqhomog 10622 ser3ge0 10628 seq3coll 10934 fsum1p 11583 telfsumo 11631 telfsumo2 11632 fsumparts 11635 mertenslem2 11701 prodfap0 11710 prodfrecap 11711 fprod1p 11764 phicl2 12382 4sqlem19 12578 gsum0g 13039 gsumsplit1r 13041 gsumfzz 13127 gsumfzfsumlemm 14143 inffz 15716 | 
| Copyright terms: Public domain | W3C validator |