Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzfz1 | Unicode version |
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
eluzfz1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9471 | . . 3 | |
2 | uzid 9480 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | eluzfz 9955 | . 2 | |
5 | 3, 4 | mpancom 419 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cfv 5188 (class class class)co 5842 cz 9191 cuz 9466 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-neg 8072 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: elfz3 9969 fzm 9973 fzopth 9996 fz01or 10046 exfzdc 10175 seq3clss 10402 seq3fveq 10406 seq3shft2 10408 monoord 10411 monoord2 10412 iseqf1olemqk 10429 seq3f1olemqsumkj 10433 seq3f1olemp 10437 seq3id3 10442 ser3ge0 10452 seq3coll 10755 fsum1p 11359 telfsumo 11407 telfsumo2 11408 fsumparts 11411 mertenslem2 11477 prodfap0 11486 prodfrecap 11487 fprod1p 11540 phicl2 12146 inffz 13948 |
Copyright terms: Public domain | W3C validator |