Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzfz2 | Unicode version |
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
eluzfz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9496 | . . 3 | |
2 | uzid 9501 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | eluzfz 9976 | . 2 | |
5 | 3, 4 | mpdan 419 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cfv 5198 (class class class)co 5853 cz 9212 cuz 9487 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-neg 8093 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: eluzfz2b 9989 elfzubelfz 9992 fzopth 10017 fzsuc 10025 fseq1p1m1 10050 fzm1 10056 fzneuz 10057 fzoend 10178 exfzdc 10196 uzsinds 10398 seq3clss 10423 seq3fveq2 10425 seq3shft2 10429 monoord 10432 monoord2 10433 seq3split 10435 seq3caopr3 10437 seq3f1olemp 10458 seq3id3 10463 seq3id2 10465 ser3ge0 10473 seq3coll 10777 summodclem2a 11344 fsumm1 11379 telfsumo 11429 telfsumo2 11430 fsumparts 11433 prodfap0 11508 prodfrecap 11509 prodmodclem2a 11539 fprodm1 11561 eulerthlemrprm 12183 eulerthlema 12184 nninfdclemlt 12406 supfz 14100 |
Copyright terms: Public domain | W3C validator |