ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzfz2 Unicode version

Theorem eluzfz2 9988
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
eluzfz2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )

Proof of Theorem eluzfz2
StepHypRef Expression
1 eluzelz 9496 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2 uzid 9501 . . 3  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
31, 2syl 14 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( ZZ>= `  N )
)
4 eluzfz 9976 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  N )
)  ->  N  e.  ( M ... N ) )
53, 4mpdan 419 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   ` cfv 5198  (class class class)co 5853   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-neg 8093  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  eluzfz2b  9989  elfzubelfz  9992  fzopth  10017  fzsuc  10025  fseq1p1m1  10050  fzm1  10056  fzneuz  10057  fzoend  10178  exfzdc  10196  uzsinds  10398  seq3clss  10423  seq3fveq2  10425  seq3shft2  10429  monoord  10432  monoord2  10433  seq3split  10435  seq3caopr3  10437  seq3f1olemp  10458  seq3id3  10463  seq3id2  10465  ser3ge0  10473  seq3coll  10777  summodclem2a  11344  fsumm1  11379  telfsumo  11429  telfsumo2  11430  fsumparts  11433  prodfap0  11508  prodfrecap  11509  prodmodclem2a  11539  fprodm1  11561  eulerthlemrprm  12183  eulerthlema  12184  nninfdclemlt  12406  supfz  14100
  Copyright terms: Public domain W3C validator