| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzfz2 | Unicode version | ||
| Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| eluzfz2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9629 |
. . 3
| |
| 2 | uzid 9634 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | eluzfz 10114 |
. 2
| |
| 5 | 3, 4 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltirr 8010 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-neg 8219 df-z 9346 df-uz 9621 df-fz 10103 |
| This theorem is referenced by: eluzfz2b 10127 elfzubelfz 10130 fzopth 10155 fzsuc 10163 fseq1p1m1 10188 fzm1 10194 fzneuz 10195 fzoend 10317 exfzdc 10335 uzsinds 10555 seq3clss 10582 seq3fveq2 10586 seqfveq2g 10588 seq3shft2 10592 seqshft2g 10593 monoord 10596 monoord2 10597 seq3split 10599 seqsplitg 10600 seq3caopr3 10602 seqcaopr3g 10603 seq3f1olemp 10626 seqf1oglem2a 10629 seqf1oglem1 10630 seqf1oglem2 10631 seq3id3 10635 seq3id2 10637 seqhomog 10641 seqfeq4g 10642 ser3ge0 10647 seq3coll 10953 summodclem2a 11565 fsumm1 11600 telfsumo 11650 telfsumo2 11651 fsumparts 11654 prodfap0 11729 prodfrecap 11730 prodmodclem2a 11760 fprodm1 11782 eulerthlemrprm 12424 eulerthlema 12425 nninfdclemlt 12695 gsumval2 13101 gsumfzz 13199 gsumfzconst 13549 gsumfzfsumlemm 14221 supfz 15828 |
| Copyright terms: Public domain | W3C validator |