ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xneg11 Unicode version

Theorem xneg11 9870
Description: Extended real version of neg11 8243. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xneg11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e A  =  -e B  <->  A  =  B
) )

Proof of Theorem xneg11
StepHypRef Expression
1 xnegeq 9863 . . 3  |-  (  -e A  =  -e
B  ->  -e  -e A  =  -e  -e B )
2 xnegneg 9869 . . . 4  |-  ( A  e.  RR*  ->  -e  -e A  =  A )
3 xnegneg 9869 . . . 4  |-  ( B  e.  RR*  ->  -e  -e B  =  B )
42, 3eqeqan12d 2205 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e  -e A  =  -e  -e B  <->  A  =  B
) )
51, 4imbitrid 154 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e A  =  -e B  ->  A  =  B ) )
6 xnegeq 9863 . 2  |-  ( A  =  B  ->  -e
A  =  -e
B )
75, 6impbid1 142 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e A  =  -e B  <->  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   RR*cxr 8026    -ecxne 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-iota 5199  df-fun 5240  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-xr 8031  df-sub 8165  df-neg 8166  df-xneg 9808
This theorem is referenced by:  xaddass2  9906  xrnegiso  11311  xrnegcon1d  11313
  Copyright terms: Public domain W3C validator