ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqabs Unicode version

Theorem sqabs 11312
Description: The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.)
Assertion
Ref Expression
sqabs  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( abs `  A
)  =  ( abs `  B ) ) )

Proof of Theorem sqabs
StepHypRef Expression
1 resqcl 10733 . . . . 5  |-  ( A  e.  RR  ->  ( A ^ 2 )  e.  RR )
2 sqge0 10742 . . . . 5  |-  ( A  e.  RR  ->  0  <_  ( A ^ 2 ) )
3 absid 11301 . . . . 5  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <_  ( A ^
2 ) )  -> 
( abs `  ( A ^ 2 ) )  =  ( A ^
2 ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( A  e.  RR  ->  ( abs `  ( A ^
2 ) )  =  ( A ^ 2 ) )
5 recn 8040 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
6 2nn0 9294 . . . . 5  |-  2  e.  NN0
7 absexp 11309 . . . . 5  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( abs `  ( A ^ 2 ) )  =  ( ( abs `  A ) ^ 2 ) )
85, 6, 7sylancl 413 . . . 4  |-  ( A  e.  RR  ->  ( abs `  ( A ^
2 ) )  =  ( ( abs `  A
) ^ 2 ) )
94, 8eqtr3d 2239 . . 3  |-  ( A  e.  RR  ->  ( A ^ 2 )  =  ( ( abs `  A
) ^ 2 ) )
10 resqcl 10733 . . . . 5  |-  ( B  e.  RR  ->  ( B ^ 2 )  e.  RR )
11 sqge0 10742 . . . . 5  |-  ( B  e.  RR  ->  0  <_  ( B ^ 2 ) )
12 absid 11301 . . . . 5  |-  ( ( ( B ^ 2 )  e.  RR  /\  0  <_  ( B ^
2 ) )  -> 
( abs `  ( B ^ 2 ) )  =  ( B ^
2 ) )
1310, 11, 12syl2anc 411 . . . 4  |-  ( B  e.  RR  ->  ( abs `  ( B ^
2 ) )  =  ( B ^ 2 ) )
14 recn 8040 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
15 absexp 11309 . . . . 5  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( abs `  ( B ^ 2 ) )  =  ( ( abs `  B ) ^ 2 ) )
1614, 6, 15sylancl 413 . . . 4  |-  ( B  e.  RR  ->  ( abs `  ( B ^
2 ) )  =  ( ( abs `  B
) ^ 2 ) )
1713, 16eqtr3d 2239 . . 3  |-  ( B  e.  RR  ->  ( B ^ 2 )  =  ( ( abs `  B
) ^ 2 ) )
189, 17eqeqan12d 2220 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( ( abs `  A
) ^ 2 )  =  ( ( abs `  B ) ^ 2 ) ) )
19 abscl 11281 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
20 absge0 11290 . . . . 5  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
2119, 20jca 306 . . . 4  |-  ( A  e.  CC  ->  (
( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) ) )
22 abscl 11281 . . . . 5  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
23 absge0 11290 . . . . 5  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
2422, 23jca 306 . . . 4  |-  ( B  e.  CC  ->  (
( abs `  B
)  e.  RR  /\  0  <_  ( abs `  B
) ) )
25 sq11 10738 . . . 4  |-  ( ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  /\  (
( abs `  B
)  e.  RR  /\  0  <_  ( abs `  B
) ) )  -> 
( ( ( abs `  A ) ^ 2 )  =  ( ( abs `  B ) ^ 2 )  <->  ( abs `  A )  =  ( abs `  B ) ) )
2621, 24, 25syl2an 289 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( abs `  A ) ^ 2 )  =  ( ( abs `  B ) ^ 2 )  <->  ( abs `  A )  =  ( abs `  B ) ) )
275, 14, 26syl2an 289 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( abs `  A ) ^ 2 )  =  ( ( abs `  B ) ^ 2 )  <->  ( abs `  A )  =  ( abs `  B ) ) )
2818, 27bitrd 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A ^
2 )  =  ( B ^ 2 )  <-> 
( abs `  A
)  =  ( abs `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   CCcc 7905   RRcr 7906   0cc0 7907    <_ cle 8090   2c2 9069   NN0cn0 9277   ^cexp 10664   abscabs 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-rp 9758  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229
This theorem is referenced by:  coskpi  15238
  Copyright terms: Public domain W3C validator