ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sq11 Unicode version

Theorem sq11 10595
Description: The square function is one-to-one for nonnegative reals. Also see sq11ap 10690 which would easily follow from this given excluded middle, but which for us is proved another way. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
sq11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  A  =  B
) )

Proof of Theorem sq11
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
21recnd 7988 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  CC )
3 sqval 10580 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
42, 3syl 14 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A ^ 2 )  =  ( A  x.  A ) )
5 simpl 109 . . . . 5  |-  ( ( B  e.  RR  /\  0  <_  B )  ->  B  e.  RR )
65recnd 7988 . . . 4  |-  ( ( B  e.  RR  /\  0  <_  B )  ->  B  e.  CC )
7 sqval 10580 . . . 4  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
86, 7syl 14 . . 3  |-  ( ( B  e.  RR  /\  0  <_  B )  -> 
( B ^ 2 )  =  ( B  x.  B ) )
94, 8eqeqan12d 2193 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  ( A  x.  A )  =  ( B  x.  B ) ) )
10 msq11 8861 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  A )  =  ( B  x.  B )  <->  A  =  B ) )
119, 10bitrd 188 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  =  ( B ^ 2 )  <->  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    x. cmul 7818    <_ cle 7995   2c2 8972   ^cexp 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-exp 10522
This theorem is referenced by:  qsqeqor  10633  sq11d  10689  sqrt11  11050  sqrtsq2  11054  sqabs  11093  dvdssqlem  12033  pythagtriplem3  12269  sinhalfpilem  14251  lgsne0  14478  lgsdinn0  14488
  Copyright terms: Public domain W3C validator