ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recan Unicode version

Theorem recan 11291
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
Assertion
Ref Expression
recan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  <-> 
A  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem recan
StepHypRef Expression
1 ax-1cn 7989 . . . . 5  |-  1  e.  CC
2 oveq1 5932 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  A )  =  ( 1  x.  A ) )
32fveq2d 5565 . . . . . . 7  |-  ( x  =  1  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  (
1  x.  A ) ) )
4 oveq1 5932 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  B )  =  ( 1  x.  B ) )
54fveq2d 5565 . . . . . . 7  |-  ( x  =  1  ->  (
Re `  ( x  x.  B ) )  =  ( Re `  (
1  x.  B ) ) )
63, 5eqeq12d 2211 . . . . . 6  |-  ( x  =  1  ->  (
( Re `  (
x  x.  A ) )  =  ( Re
`  ( x  x.  B ) )  <->  ( Re `  ( 1  x.  A
) )  =  ( Re `  ( 1  x.  B ) ) ) )
76rspcv 2864 . . . . 5  |-  ( 1  e.  CC  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A ) )  =  ( Re `  ( x  x.  B
) )  ->  (
Re `  ( 1  x.  A ) )  =  ( Re `  (
1  x.  B ) ) ) )
81, 7ax-mp 5 . . . 4  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( Re `  ( 1  x.  A
) )  =  ( Re `  ( 1  x.  B ) ) )
9 negicn 8244 . . . . . 6  |-  -u _i  e.  CC
10 oveq1 5932 . . . . . . . . 9  |-  ( x  =  -u _i  ->  (
x  x.  A )  =  ( -u _i  x.  A ) )
1110fveq2d 5565 . . . . . . . 8  |-  ( x  =  -u _i  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  ( -u _i  x.  A ) ) )
12 oveq1 5932 . . . . . . . . 9  |-  ( x  =  -u _i  ->  (
x  x.  B )  =  ( -u _i  x.  B ) )
1312fveq2d 5565 . . . . . . . 8  |-  ( x  =  -u _i  ->  (
Re `  ( x  x.  B ) )  =  ( Re `  ( -u _i  x.  B ) ) )
1411, 13eqeq12d 2211 . . . . . . 7  |-  ( x  =  -u _i  ->  (
( Re `  (
x  x.  A ) )  =  ( Re
`  ( x  x.  B ) )  <->  ( Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) ) )
1514rspcv 2864 . . . . . 6  |-  ( -u _i  e.  CC  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A ) )  =  ( Re `  ( x  x.  B
) )  ->  (
Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) ) )
169, 15ax-mp 5 . . . . 5  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) )
1716oveq2d 5941 . . . 4  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( _i  x.  ( Re `  ( -u _i  x.  A ) ) )  =  ( _i  x.  ( Re
`  ( -u _i  x.  B ) ) ) )
188, 17oveq12d 5943 . . 3  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( (
Re `  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) )  =  ( ( Re `  ( 1  x.  B ) )  +  ( _i  x.  ( Re `  ( -u _i  x.  B ) ) ) ) )
19 replim 11041 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
20 mullid 8041 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
2120eqcomd 2202 . . . . . . 7  |-  ( A  e.  CC  ->  A  =  ( 1  x.  A ) )
2221fveq2d 5565 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( Re `  ( 1  x.  A
) ) )
23 imre 11033 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( Re `  ( -u _i  x.  A
) ) )
2423oveq2d 5941 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  =  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) )
2522, 24oveq12d 5943 . . . . 5  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( Re
`  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) ) )
2619, 25eqtrd 2229 . . . 4  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) ) )
27 replim 11041 . . . . 5  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
28 mullid 8041 . . . . . . . 8  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
2928eqcomd 2202 . . . . . . 7  |-  ( B  e.  CC  ->  B  =  ( 1  x.  B ) )
3029fveq2d 5565 . . . . . 6  |-  ( B  e.  CC  ->  (
Re `  B )  =  ( Re `  ( 1  x.  B
) ) )
31 imre 11033 . . . . . . 7  |-  ( B  e.  CC  ->  (
Im `  B )  =  ( Re `  ( -u _i  x.  B
) ) )
3231oveq2d 5941 . . . . . 6  |-  ( B  e.  CC  ->  (
_i  x.  ( Im `  B ) )  =  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) )
3330, 32oveq12d 5943 . . . . 5  |-  ( B  e.  CC  ->  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) )  =  ( ( Re
`  ( 1  x.  B ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) ) )
3427, 33eqtrd 2229 . . . 4  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  ( 1  x.  B ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) ) )
3526, 34eqeqan12d 2212 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <-> 
( ( Re `  ( 1  x.  A
) )  +  ( _i  x.  ( Re
`  ( -u _i  x.  A ) ) ) )  =  ( ( Re `  ( 1  x.  B ) )  +  ( _i  x.  ( Re `  ( -u _i  x.  B ) ) ) ) ) )
3618, 35imbitrrid 156 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  ->  A  =  B ) )
37 oveq2 5933 . . . 4  |-  ( A  =  B  ->  (
x  x.  A )  =  ( x  x.  B ) )
3837fveq2d 5565 . . 3  |-  ( A  =  B  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) ) )
3938ralrimivw 2571 . 2  |-  ( A  =  B  ->  A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) ) )
4036, 39impbid1 142 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5259  (class class class)co 5925   CCcc 7894   1c1 7897   _ici 7898    + caddc 7899    x. cmul 7901   -ucneg 8215   Recre 11022   Imcim 11023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066  df-cj 11024  df-re 11025  df-im 11026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator