ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recan Unicode version

Theorem recan 10881
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
Assertion
Ref Expression
recan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  <-> 
A  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem recan
StepHypRef Expression
1 ax-1cn 7713 . . . . 5  |-  1  e.  CC
2 oveq1 5781 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  A )  =  ( 1  x.  A ) )
32fveq2d 5425 . . . . . . 7  |-  ( x  =  1  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  (
1  x.  A ) ) )
4 oveq1 5781 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  B )  =  ( 1  x.  B ) )
54fveq2d 5425 . . . . . . 7  |-  ( x  =  1  ->  (
Re `  ( x  x.  B ) )  =  ( Re `  (
1  x.  B ) ) )
63, 5eqeq12d 2154 . . . . . 6  |-  ( x  =  1  ->  (
( Re `  (
x  x.  A ) )  =  ( Re
`  ( x  x.  B ) )  <->  ( Re `  ( 1  x.  A
) )  =  ( Re `  ( 1  x.  B ) ) ) )
76rspcv 2785 . . . . 5  |-  ( 1  e.  CC  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A ) )  =  ( Re `  ( x  x.  B
) )  ->  (
Re `  ( 1  x.  A ) )  =  ( Re `  (
1  x.  B ) ) ) )
81, 7ax-mp 5 . . . 4  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( Re `  ( 1  x.  A
) )  =  ( Re `  ( 1  x.  B ) ) )
9 negicn 7963 . . . . . 6  |-  -u _i  e.  CC
10 oveq1 5781 . . . . . . . . 9  |-  ( x  =  -u _i  ->  (
x  x.  A )  =  ( -u _i  x.  A ) )
1110fveq2d 5425 . . . . . . . 8  |-  ( x  =  -u _i  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  ( -u _i  x.  A ) ) )
12 oveq1 5781 . . . . . . . . 9  |-  ( x  =  -u _i  ->  (
x  x.  B )  =  ( -u _i  x.  B ) )
1312fveq2d 5425 . . . . . . . 8  |-  ( x  =  -u _i  ->  (
Re `  ( x  x.  B ) )  =  ( Re `  ( -u _i  x.  B ) ) )
1411, 13eqeq12d 2154 . . . . . . 7  |-  ( x  =  -u _i  ->  (
( Re `  (
x  x.  A ) )  =  ( Re
`  ( x  x.  B ) )  <->  ( Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) ) )
1514rspcv 2785 . . . . . 6  |-  ( -u _i  e.  CC  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A ) )  =  ( Re `  ( x  x.  B
) )  ->  (
Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) ) )
169, 15ax-mp 5 . . . . 5  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) )
1716oveq2d 5790 . . . 4  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( _i  x.  ( Re `  ( -u _i  x.  A ) ) )  =  ( _i  x.  ( Re
`  ( -u _i  x.  B ) ) ) )
188, 17oveq12d 5792 . . 3  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( (
Re `  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) )  =  ( ( Re `  ( 1  x.  B ) )  +  ( _i  x.  ( Re `  ( -u _i  x.  B ) ) ) ) )
19 replim 10631 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
20 mulid2 7764 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
2120eqcomd 2145 . . . . . . 7  |-  ( A  e.  CC  ->  A  =  ( 1  x.  A ) )
2221fveq2d 5425 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( Re `  ( 1  x.  A
) ) )
23 imre 10623 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( Re `  ( -u _i  x.  A
) ) )
2423oveq2d 5790 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  =  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) )
2522, 24oveq12d 5792 . . . . 5  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( Re
`  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) ) )
2619, 25eqtrd 2172 . . . 4  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) ) )
27 replim 10631 . . . . 5  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
28 mulid2 7764 . . . . . . . 8  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
2928eqcomd 2145 . . . . . . 7  |-  ( B  e.  CC  ->  B  =  ( 1  x.  B ) )
3029fveq2d 5425 . . . . . 6  |-  ( B  e.  CC  ->  (
Re `  B )  =  ( Re `  ( 1  x.  B
) ) )
31 imre 10623 . . . . . . 7  |-  ( B  e.  CC  ->  (
Im `  B )  =  ( Re `  ( -u _i  x.  B
) ) )
3231oveq2d 5790 . . . . . 6  |-  ( B  e.  CC  ->  (
_i  x.  ( Im `  B ) )  =  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) )
3330, 32oveq12d 5792 . . . . 5  |-  ( B  e.  CC  ->  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) )  =  ( ( Re
`  ( 1  x.  B ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) ) )
3427, 33eqtrd 2172 . . . 4  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  ( 1  x.  B ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) ) )
3526, 34eqeqan12d 2155 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <-> 
( ( Re `  ( 1  x.  A
) )  +  ( _i  x.  ( Re
`  ( -u _i  x.  A ) ) ) )  =  ( ( Re `  ( 1  x.  B ) )  +  ( _i  x.  ( Re `  ( -u _i  x.  B ) ) ) ) ) )
3618, 35syl5ibr 155 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  ->  A  =  B ) )
37 oveq2 5782 . . . 4  |-  ( A  =  B  ->  (
x  x.  A )  =  ( x  x.  B ) )
3837fveq2d 5425 . . 3  |-  ( A  =  B  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) ) )
3938ralrimivw 2506 . 2  |-  ( A  =  B  ->  A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) ) )
4036, 39impbid1 141 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   ` cfv 5123  (class class class)co 5774   CCcc 7618   1c1 7621   _ici 7622    + caddc 7623    x. cmul 7625   -ucneg 7934   Recre 10612   Imcim 10613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-2 8779  df-cj 10614  df-re 10615  df-im 10616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator