ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ffzeq Unicode version

Theorem 2ffzeq 10111
Description: Two functions over 0 based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
Assertion
Ref Expression
2ffzeq  |-  ( ( M  e.  NN0  /\  F : ( 0 ... M ) --> X  /\  P : ( 0 ... N ) --> Y )  ->  ( F  =  P  <->  ( M  =  N  /\  A. i  e.  ( 0 ... M
) ( F `  i )  =  ( P `  i ) ) ) )
Distinct variable groups:    i, F    i, M    P, i
Allowed substitution hints:    N( i)    X( i)    Y( i)

Proof of Theorem 2ffzeq
StepHypRef Expression
1 ffn 5357 . . . . 5  |-  ( F : ( 0 ... M ) --> X  ->  F  Fn  ( 0 ... M ) )
2 ffn 5357 . . . . 5  |-  ( P : ( 0 ... N ) --> Y  ->  P  Fn  ( 0 ... N ) )
31, 2anim12i 338 . . . 4  |-  ( ( F : ( 0 ... M ) --> X  /\  P : ( 0 ... N ) --> Y )  ->  ( F  Fn  ( 0 ... M )  /\  P  Fn  ( 0 ... N ) ) )
433adant1 1015 . . 3  |-  ( ( M  e.  NN0  /\  F : ( 0 ... M ) --> X  /\  P : ( 0 ... N ) --> Y )  ->  ( F  Fn  ( 0 ... M
)  /\  P  Fn  ( 0 ... N
) ) )
5 eqfnfv2 5606 . . 3  |-  ( ( F  Fn  ( 0 ... M )  /\  P  Fn  ( 0 ... N ) )  ->  ( F  =  P  <->  ( ( 0 ... M )  =  ( 0 ... N
)  /\  A. i  e.  ( 0 ... M
) ( F `  i )  =  ( P `  i ) ) ) )
64, 5syl 14 . 2  |-  ( ( M  e.  NN0  /\  F : ( 0 ... M ) --> X  /\  P : ( 0 ... N ) --> Y )  ->  ( F  =  P  <->  ( ( 0 ... M )  =  ( 0 ... N
)  /\  A. i  e.  ( 0 ... M
) ( F `  i )  =  ( P `  i ) ) ) )
7 elnn0uz 9538 . . . . . . 7  |-  ( M  e.  NN0  <->  M  e.  ( ZZ>=
`  0 ) )
8 fzopth 10031 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( (
0 ... M )  =  ( 0 ... N
)  <->  ( 0  =  0  /\  M  =  N ) ) )
97, 8sylbi 121 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( 0 ... M )  =  ( 0 ... N )  <->  ( 0  =  0  /\  M  =  N ) ) )
10 simpr 110 . . . . . 6  |-  ( ( 0  =  0  /\  M  =  N )  ->  M  =  N )
119, 10syl6bi 163 . . . . 5  |-  ( M  e.  NN0  ->  ( ( 0 ... M )  =  ( 0 ... N )  ->  M  =  N ) )
1211anim1d 336 . . . 4  |-  ( M  e.  NN0  ->  ( ( ( 0 ... M
)  =  ( 0 ... N )  /\  A. i  e.  ( 0 ... M ) ( F `  i )  =  ( P `  i ) )  -> 
( M  =  N  /\  A. i  e.  ( 0 ... M
) ( F `  i )  =  ( P `  i ) ) ) )
13 oveq2 5873 . . . . 5  |-  ( M  =  N  ->  (
0 ... M )  =  ( 0 ... N
) )
1413anim1i 340 . . . 4  |-  ( ( M  =  N  /\  A. i  e.  ( 0 ... M ) ( F `  i )  =  ( P `  i ) )  -> 
( ( 0 ... M )  =  ( 0 ... N )  /\  A. i  e.  ( 0 ... M
) ( F `  i )  =  ( P `  i ) ) )
1512, 14impbid1 142 . . 3  |-  ( M  e.  NN0  ->  ( ( ( 0 ... M
)  =  ( 0 ... N )  /\  A. i  e.  ( 0 ... M ) ( F `  i )  =  ( P `  i ) )  <->  ( M  =  N  /\  A. i  e.  ( 0 ... M
) ( F `  i )  =  ( P `  i ) ) ) )
16153ad2ant1 1018 . 2  |-  ( ( M  e.  NN0  /\  F : ( 0 ... M ) --> X  /\  P : ( 0 ... N ) --> Y )  ->  ( ( ( 0 ... M )  =  ( 0 ... N )  /\  A. i  e.  ( 0 ... M ) ( F `  i )  =  ( P `  i ) )  <->  ( M  =  N  /\  A. i  e.  ( 0 ... M
) ( F `  i )  =  ( P `  i ) ) ) )
176, 16bitrd 188 1  |-  ( ( M  e.  NN0  /\  F : ( 0 ... M ) --> X  /\  P : ( 0 ... N ) --> Y )  ->  ( F  =  P  <->  ( M  =  N  /\  A. i  e.  ( 0 ... M
) ( F `  i )  =  ( P `  i ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453    Fn wfn 5203   -->wf 5204   ` cfv 5208  (class class class)co 5865   0cc0 7786   NN0cn0 9149   ZZ>=cuz 9501   ...cfz 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-fz 9980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator