Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqop | GIF version |
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
eqop | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 6154 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | 1 | eqeq1d 2179 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉)) |
3 | 1stexg 6146 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (1st ‘𝐴) ∈ V) | |
4 | 2ndexg 6147 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (2nd ‘𝐴) ∈ V) | |
5 | opthg 4223 | . . 3 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | |
6 | 3, 4, 5 | syl2anc 409 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
7 | 2, 6 | bitrd 187 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 〈cop 3586 × cxp 4609 ‘cfv 5198 1st c1st 6117 2nd c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: eqop2 6157 op1steq 6158 f1od2 6214 txhmeo 13113 |
Copyright terms: Public domain | W3C validator |