![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqop | GIF version |
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
eqop | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 6176 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
2 | 1 | eqeq1d 2186 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨𝐵, 𝐶⟩)) |
3 | 1stexg 6168 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (1st ‘𝐴) ∈ V) | |
4 | 2ndexg 6169 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (2nd ‘𝐴) ∈ V) | |
5 | opthg 4239 | . . 3 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) → (⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | |
6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
7 | 2, 6 | bitrd 188 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2738 ⟨cop 3596 × cxp 4625 ‘cfv 5217 1st c1st 6139 2nd c2nd 6140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fo 5223 df-fv 5225 df-1st 6141 df-2nd 6142 |
This theorem is referenced by: eqop2 6179 op1steq 6180 f1od2 6236 txhmeo 13822 |
Copyright terms: Public domain | W3C validator |