ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1oleme Unicode version

Theorem reeff1oleme 12876
Description: Lemma for reeff1o 12877. (Contributed by Jim Kingdon, 15-May-2024.)
Assertion
Ref Expression
reeff1oleme  |-  ( U  e.  ( 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x
)  =  U )
Distinct variable group:    x, U

Proof of Theorem reeff1oleme
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ere 11388 . . . . 5  |-  _e  e.  RR
21a1i 9 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  _e  e.  RR )
3 elioore 9707 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  U  e.  RR )
4 0xr 7824 . . . . . . 7  |-  0  e.  RR*
51rexri 7835 . . . . . . 7  |-  _e  e.  RR*
6 elioo2 9716 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  _e  e.  RR* )  ->  ( U  e.  ( 0 (,) _e )  <->  ( U  e.  RR  /\  0  < 
U  /\  U  <  _e ) ) )
74, 5, 6mp2an 422 . . . . . 6  |-  ( U  e.  ( 0 (,) _e )  <->  ( U  e.  RR  /\  0  < 
U  /\  U  <  _e ) )
87simp2bi 997 . . . . 5  |-  ( U  e.  ( 0 (,) _e )  ->  0  <  U )
93, 8gt0ap0d 8403 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  U #  0 )
102, 3, 9redivclapd 8606 . . 3  |-  ( U  e.  ( 0 (,) _e )  ->  (
_e  /  U )  e.  RR )
113recnd 7806 . . . . . 6  |-  ( U  e.  ( 0 (,) _e )  ->  U  e.  CC )
1211mulid2d 7796 . . . . 5  |-  ( U  e.  ( 0 (,) _e )  ->  (
1  x.  U )  =  U )
137simp3bi 998 . . . . 5  |-  ( U  e.  ( 0 (,) _e )  ->  U  <  _e )
1412, 13eqbrtrd 3950 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  (
1  x.  U )  <  _e )
15 1red 7793 . . . . 5  |-  ( U  e.  ( 0 (,) _e )  ->  1  e.  RR )
16 ltmuldiv 8644 . . . . 5  |-  ( ( 1  e.  RR  /\  _e  e.  RR  /\  ( U  e.  RR  /\  0  <  U ) )  -> 
( ( 1  x.  U )  <  _e  <->  1  <  ( _e  /  U ) ) )
1715, 2, 3, 8, 16syl112anc 1220 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  (
( 1  x.  U
)  <  _e  <->  1  <  ( _e  /  U ) ) )
1814, 17mpbid 146 . . 3  |-  ( U  e.  ( 0 (,) _e )  ->  1  <  ( _e  /  U
) )
19 reeff1olem 12875 . . 3  |-  ( ( ( _e  /  U
)  e.  RR  /\  1  <  ( _e  /  U ) )  ->  E. y  e.  RR  ( exp `  y )  =  ( _e  /  U ) )
2010, 18, 19syl2anc 408 . 2  |-  ( U  e.  ( 0 (,) _e )  ->  E. y  e.  RR  ( exp `  y
)  =  ( _e 
/  U ) )
21 1red 7793 . . . 4  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  1  e.  RR )
22 simprl 520 . . . 4  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  y  e.  RR )
2321, 22resubcld 8155 . . 3  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( 1  -  y )  e.  RR )
24 1cnd 7794 . . . . 5  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  1  e.  CC )
2522recnd 7806 . . . . 5  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  y  e.  CC )
26 efsub 11399 . . . . 5  |-  ( ( 1  e.  CC  /\  y  e.  CC )  ->  ( exp `  (
1  -  y ) )  =  ( ( exp `  1 )  /  ( exp `  y
) ) )
2724, 25, 26syl2anc 408 . . . 4  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  ( 1  -  y
) )  =  ( ( exp `  1
)  /  ( exp `  y ) ) )
28 simprr 521 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  y )  =  ( _e  /  U ) )
29 df-e 11367 . . . . . . . 8  |-  _e  =  ( exp `  1 )
3029oveq1i 5784 . . . . . . 7  |-  ( _e 
/  U )  =  ( ( exp `  1
)  /  U )
3128, 30syl6req 2189 . . . . . 6  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( ( exp `  1 )  /  U )  =  ( exp `  y ) )
32 efcl 11382 . . . . . . . 8  |-  ( 1  e.  CC  ->  ( exp `  1 )  e.  CC )
3324, 32syl 14 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  1 )  e.  CC )
34 efcl 11382 . . . . . . . 8  |-  ( y  e.  CC  ->  ( exp `  y )  e.  CC )
3525, 34syl 14 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  y )  e.  CC )
3611adantr 274 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  U  e.  CC )
379adantr 274 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  U #  0
)
3833, 35, 36, 37divmulap2d 8596 . . . . . 6  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( (
( exp `  1
)  /  U )  =  ( exp `  y
)  <->  ( exp `  1
)  =  ( U  x.  ( exp `  y
) ) ) )
3931, 38mpbid 146 . . . . 5  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  1 )  =  ( U  x.  ( exp `  y ) ) )
4022rpefcld 11404 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  y )  e.  RR+ )
4140rpap0d 9501 . . . . . 6  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  y ) #  0 )
4233, 36, 35, 41divmulap3d 8597 . . . . 5  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( (
( exp `  1
)  /  ( exp `  y ) )  =  U  <->  ( exp `  1
)  =  ( U  x.  ( exp `  y
) ) ) )
4339, 42mpbird 166 . . . 4  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( ( exp `  1 )  / 
( exp `  y
) )  =  U )
4427, 43eqtrd 2172 . . 3  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  ( 1  -  y
) )  =  U )
45 fveqeq2 5430 . . . 4  |-  ( x  =  ( 1  -  y )  ->  (
( exp `  x
)  =  U  <->  ( exp `  ( 1  -  y
) )  =  U ) )
4645rspcev 2789 . . 3  |-  ( ( ( 1  -  y
)  e.  RR  /\  ( exp `  ( 1  -  y ) )  =  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
4723, 44, 46syl2anc 408 . 2  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  E. x  e.  RR  ( exp `  x
)  =  U )
4820, 47rexlimddv 2554 1  |-  ( U  e.  ( 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x
)  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7630   RRcr 7631   0cc0 7632   1c1 7633    x. cmul 7637   RR*cxr 7811    < clt 7812    - cmin 7945   # cap 8355    / cdiv 8444   (,)cioo 9683   expce 11360   _eceu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752  ax-pre-suploc 7753  ax-addf 7754  ax-mulf 7755
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-xneg 9571  df-xadd 9572  df-ioo 9687  df-ico 9689  df-icc 9690  df-fz 9803  df-fzo 9932  df-seqfrec 10231  df-exp 10305  df-fac 10484  df-bc 10506  df-ihash 10534  df-shft 10599  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-clim 11060  df-sumdc 11135  df-ef 11366  df-e 11367  df-rest 12136  df-topgen 12155  df-psmet 12170  df-xmet 12171  df-met 12172  df-bl 12173  df-mopn 12174  df-top 12179  df-topon 12192  df-bases 12224  df-ntr 12279  df-cn 12371  df-cnp 12372  df-tx 12436  df-cncf 12741  df-limced 12808  df-dvap 12809
This theorem is referenced by:  reeff1o  12877
  Copyright terms: Public domain W3C validator