ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1oleme Unicode version

Theorem reeff1oleme 15440
Description: Lemma for reeff1o 15441. (Contributed by Jim Kingdon, 15-May-2024.)
Assertion
Ref Expression
reeff1oleme  |-  ( U  e.  ( 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x
)  =  U )
Distinct variable group:    x, U

Proof of Theorem reeff1oleme
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ere 12176 . . . . 5  |-  _e  e.  RR
21a1i 9 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  _e  e.  RR )
3 elioore 10104 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  U  e.  RR )
4 0xr 8189 . . . . . . 7  |-  0  e.  RR*
51rexri 8200 . . . . . . 7  |-  _e  e.  RR*
6 elioo2 10113 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  _e  e.  RR* )  ->  ( U  e.  ( 0 (,) _e )  <->  ( U  e.  RR  /\  0  < 
U  /\  U  <  _e ) ) )
74, 5, 6mp2an 426 . . . . . 6  |-  ( U  e.  ( 0 (,) _e )  <->  ( U  e.  RR  /\  0  < 
U  /\  U  <  _e ) )
87simp2bi 1037 . . . . 5  |-  ( U  e.  ( 0 (,) _e )  ->  0  <  U )
93, 8gt0ap0d 8772 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  U #  0 )
102, 3, 9redivclapd 8978 . . 3  |-  ( U  e.  ( 0 (,) _e )  ->  (
_e  /  U )  e.  RR )
113recnd 8171 . . . . . 6  |-  ( U  e.  ( 0 (,) _e )  ->  U  e.  CC )
1211mulid2d 8161 . . . . 5  |-  ( U  e.  ( 0 (,) _e )  ->  (
1  x.  U )  =  U )
137simp3bi 1038 . . . . 5  |-  ( U  e.  ( 0 (,) _e )  ->  U  <  _e )
1412, 13eqbrtrd 4104 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  (
1  x.  U )  <  _e )
15 1red 8157 . . . . 5  |-  ( U  e.  ( 0 (,) _e )  ->  1  e.  RR )
16 ltmuldiv 9017 . . . . 5  |-  ( ( 1  e.  RR  /\  _e  e.  RR  /\  ( U  e.  RR  /\  0  <  U ) )  -> 
( ( 1  x.  U )  <  _e  <->  1  <  ( _e  /  U ) ) )
1715, 2, 3, 8, 16syl112anc 1275 . . . 4  |-  ( U  e.  ( 0 (,) _e )  ->  (
( 1  x.  U
)  <  _e  <->  1  <  ( _e  /  U ) ) )
1814, 17mpbid 147 . . 3  |-  ( U  e.  ( 0 (,) _e )  ->  1  <  ( _e  /  U
) )
19 reeff1olem 15439 . . 3  |-  ( ( ( _e  /  U
)  e.  RR  /\  1  <  ( _e  /  U ) )  ->  E. y  e.  RR  ( exp `  y )  =  ( _e  /  U ) )
2010, 18, 19syl2anc 411 . 2  |-  ( U  e.  ( 0 (,) _e )  ->  E. y  e.  RR  ( exp `  y
)  =  ( _e 
/  U ) )
21 1red 8157 . . . 4  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  1  e.  RR )
22 simprl 529 . . . 4  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  y  e.  RR )
2321, 22resubcld 8523 . . 3  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( 1  -  y )  e.  RR )
24 1cnd 8158 . . . . 5  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  1  e.  CC )
2522recnd 8171 . . . . 5  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  y  e.  CC )
26 efsub 12187 . . . . 5  |-  ( ( 1  e.  CC  /\  y  e.  CC )  ->  ( exp `  (
1  -  y ) )  =  ( ( exp `  1 )  /  ( exp `  y
) ) )
2724, 25, 26syl2anc 411 . . . 4  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  ( 1  -  y
) )  =  ( ( exp `  1
)  /  ( exp `  y ) ) )
28 simprr 531 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  y )  =  ( _e  /  U ) )
29 df-e 12155 . . . . . . . 8  |-  _e  =  ( exp `  1 )
3029oveq1i 6010 . . . . . . 7  |-  ( _e 
/  U )  =  ( ( exp `  1
)  /  U )
3128, 30eqtr2di 2279 . . . . . 6  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( ( exp `  1 )  /  U )  =  ( exp `  y ) )
32 efcl 12170 . . . . . . . 8  |-  ( 1  e.  CC  ->  ( exp `  1 )  e.  CC )
3324, 32syl 14 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  1 )  e.  CC )
34 efcl 12170 . . . . . . . 8  |-  ( y  e.  CC  ->  ( exp `  y )  e.  CC )
3525, 34syl 14 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  y )  e.  CC )
3611adantr 276 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  U  e.  CC )
379adantr 276 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  U #  0
)
3833, 35, 36, 37divmulap2d 8967 . . . . . 6  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( (
( exp `  1
)  /  U )  =  ( exp `  y
)  <->  ( exp `  1
)  =  ( U  x.  ( exp `  y
) ) ) )
3931, 38mpbid 147 . . . . 5  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  1 )  =  ( U  x.  ( exp `  y ) ) )
4022rpefcld 12192 . . . . . . 7  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  y )  e.  RR+ )
4140rpap0d 9894 . . . . . 6  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  y ) #  0 )
4233, 36, 35, 41divmulap3d 8968 . . . . 5  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( (
( exp `  1
)  /  ( exp `  y ) )  =  U  <->  ( exp `  1
)  =  ( U  x.  ( exp `  y
) ) ) )
4339, 42mpbird 167 . . . 4  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( ( exp `  1 )  / 
( exp `  y
) )  =  U )
4427, 43eqtrd 2262 . . 3  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  ( exp `  ( 1  -  y
) )  =  U )
45 fveqeq2 5635 . . . 4  |-  ( x  =  ( 1  -  y )  ->  (
( exp `  x
)  =  U  <->  ( exp `  ( 1  -  y
) )  =  U ) )
4645rspcev 2907 . . 3  |-  ( ( ( 1  -  y
)  e.  RR  /\  ( exp `  ( 1  -  y ) )  =  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
4723, 44, 46syl2anc 411 . 2  |-  ( ( U  e.  ( 0 (,) _e )  /\  ( y  e.  RR  /\  ( exp `  y
)  =  ( _e 
/  U ) ) )  ->  E. x  e.  RR  ( exp `  x
)  =  U )
4820, 47rexlimddv 2653 1  |-  ( U  e.  ( 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x
)  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    x. cmul 8000   RR*cxr 8176    < clt 8177    - cmin 8313   # cap 8724    / cdiv 8815   (,)cioo 10080   expce 12148   _eceu 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ioo 10084  df-ico 10086  df-icc 10087  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-e 12155  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-cncf 15239  df-limced 15324  df-dvap 15325
This theorem is referenced by:  reeff1o  15441
  Copyright terms: Public domain W3C validator