ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erex GIF version

Theorem erex 6625
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))

Proof of Theorem erex
StepHypRef Expression
1 erssxp 6624 . . 3 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
2 xpexg 4778 . . . 4 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
32anidms 397 . . 3 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
4 ssexg 4173 . . 3 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V)
51, 3, 4syl2an 289 . 2 ((𝑅 Er 𝐴𝐴𝑉) → 𝑅 ∈ V)
65ex 115 1 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  wss 3157   × cxp 4662   Er wer 6598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-er 6601
This theorem is referenced by:  erexb  6626  qliftlem  6681  qusaddvallemg  13035  qusaddflemg  13036  qusaddval  13037  qusaddf  13038  qusmulval  13039  qusmulf  13040  qusgrp2  13319  eqgen  13433  qusrng  13590  qusring2  13698
  Copyright terms: Public domain W3C validator