ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erex GIF version

Theorem erex 6694
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))

Proof of Theorem erex
StepHypRef Expression
1 erssxp 6693 . . 3 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
2 xpexg 4830 . . . 4 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
32anidms 397 . . 3 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
4 ssexg 4222 . . 3 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V)
51, 3, 4syl2an 289 . 2 ((𝑅 Er 𝐴𝐴𝑉) → 𝑅 ∈ V)
65ex 115 1 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  wss 3197   × cxp 4714   Er wer 6667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-cnv 4724  df-dm 4726  df-rn 4727  df-er 6670
This theorem is referenced by:  erexb  6695  qliftlem  6750  qusaddvallemg  13352  qusaddflemg  13353  qusaddval  13354  qusaddf  13355  qusmulval  13356  qusmulf  13357  qusgrp2  13636  eqgen  13750  qusrng  13907  qusring2  14015
  Copyright terms: Public domain W3C validator