| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erex | GIF version | ||
| Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erex | ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erssxp 6653 | . . 3 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) | |
| 2 | xpexg 4794 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
| 3 | 2 | anidms 397 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| 4 | ssexg 4188 | . . 3 ⊢ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V) | |
| 5 | 1, 3, 4 | syl2an 289 | . 2 ⊢ ((𝑅 Er 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ V) |
| 6 | 5 | ex 115 | 1 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3168 × cxp 4678 Er wer 6627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-xp 4686 df-rel 4687 df-cnv 4688 df-dm 4690 df-rn 4691 df-er 6630 |
| This theorem is referenced by: erexb 6655 qliftlem 6710 qusaddvallemg 13215 qusaddflemg 13216 qusaddval 13217 qusaddf 13218 qusmulval 13219 qusmulf 13220 qusgrp2 13499 eqgen 13613 qusrng 13770 qusring2 13878 |
| Copyright terms: Public domain | W3C validator |