ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusaddval Unicode version

Theorem qusaddval 12811
Description: The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusaddf.r  |-  ( ph  ->  .~  Er  V )
qusaddf.z  |-  ( ph  ->  R  e.  Z )
qusaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
qusaddf.p  |-  .x.  =  ( +g  `  R )
qusaddf.a  |-  .xb  =  ( +g  `  U )
Assertion
Ref Expression
qusaddval  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Distinct variable groups:    a, b, p, q,  .~    ph, a, b, p, q    V, a, b, p, q    R, p, q    .x. , p, q    X, p, q    .xb , a,
b, p, q    Y, p, q
Allowed substitution hints:    R( a, b)    .x. ( a, b)    U( q, p, a, b)    X( a, b)    Y( a, b)    Z( q, p, a, b)

Proof of Theorem qusaddval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qusaddf.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusaddf.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 qusaddf.r . 2  |-  ( ph  ->  .~  Er  V )
4 qusaddf.z . 2  |-  ( ph  ->  R  e.  Z )
5 qusaddf.e . 2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
6 qusaddf.c . 2  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
7 eqid 2189 . 2  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
8 basfn 12570 . . . . . . 7  |-  Base  Fn  _V
94elexd 2765 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
10 funfvex 5551 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1110funfni 5335 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
128, 9, 11sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
132, 12eqeltrd 2266 . . . . 5  |-  ( ph  ->  V  e.  _V )
14 erex 6583 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
153, 13, 14sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
161, 2, 7, 15, 4qusval 12800 . . 3  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
171, 2, 7, 15, 4quslem 12801 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  ) : V -onto-> ( V /.  .~  ) )
18 qusaddf.p . . 3  |-  .x.  =  ( +g  `  R )
19 qusaddf.a . . 3  |-  .xb  =  ( +g  `  U )
2016, 2, 17, 4, 18, 19imasplusg 12785 . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. (
( x  e.  V  |->  [ x ]  .~  ) `  p ) ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  q
) >. ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  ( p  .x.  q
) ) >. } )
21 plusgslid 12624 . . . . 5  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2221slotex 12539 . . . 4  |-  ( R  e.  Z  ->  ( +g  `  R )  e. 
_V )
234, 22syl 14 . . 3  |-  ( ph  ->  ( +g  `  R
)  e.  _V )
2418, 23eqeltrid 2276 . 2  |-  ( ph  ->  .x.  e.  _V )
251, 2, 3, 4, 5, 6, 7, 20, 24qusaddvallemg 12809 1  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   _Vcvv 2752   class class class wbr 4018    |-> cmpt 4079    Fn wfn 5230   ` cfv 5235  (class class class)co 5896    Er wer 6556   [cec 6557   /.cqs 6558   Basecbs 12512   +g cplusg 12589    /.s cqus 12777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-er 6559  df-ec 6561  df-qs 6565  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-ndx 12515  df-slot 12516  df-base 12518  df-plusg 12602  df-mulr 12603  df-iimas 12779  df-qus 12780
This theorem is referenced by:  qusadd  13173
  Copyright terms: Public domain W3C validator