ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusaddval Unicode version

Theorem qusaddval 13167
Description: The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusaddf.r  |-  ( ph  ->  .~  Er  V )
qusaddf.z  |-  ( ph  ->  R  e.  Z )
qusaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
qusaddf.p  |-  .x.  =  ( +g  `  R )
qusaddf.a  |-  .xb  =  ( +g  `  U )
Assertion
Ref Expression
qusaddval  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Distinct variable groups:    a, b, p, q,  .~    ph, a, b, p, q    V, a, b, p, q    R, p, q    .x. , p, q    X, p, q    .xb , a,
b, p, q    Y, p, q
Allowed substitution hints:    R( a, b)    .x. ( a, b)    U( q, p, a, b)    X( a, b)    Y( a, b)    Z( q, p, a, b)

Proof of Theorem qusaddval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qusaddf.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusaddf.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 qusaddf.r . 2  |-  ( ph  ->  .~  Er  V )
4 qusaddf.z . 2  |-  ( ph  ->  R  e.  Z )
5 qusaddf.e . 2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
6 qusaddf.c . 2  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
7 eqid 2205 . 2  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
8 basfn 12890 . . . . . . 7  |-  Base  Fn  _V
94elexd 2785 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
10 funfvex 5593 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1110funfni 5376 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
128, 9, 11sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
132, 12eqeltrd 2282 . . . . 5  |-  ( ph  ->  V  e.  _V )
14 erex 6644 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
153, 13, 14sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
161, 2, 7, 15, 4qusval 13155 . . 3  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
171, 2, 7, 15, 4quslem 13156 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  ) : V -onto-> ( V /.  .~  ) )
18 qusaddf.p . . 3  |-  .x.  =  ( +g  `  R )
19 qusaddf.a . . 3  |-  .xb  =  ( +g  `  U )
2016, 2, 17, 4, 18, 19imasplusg 13140 . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. (
( x  e.  V  |->  [ x ]  .~  ) `  p ) ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  q
) >. ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  ( p  .x.  q
) ) >. } )
21 plusgslid 12944 . . . . 5  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2221slotex 12859 . . . 4  |-  ( R  e.  Z  ->  ( +g  `  R )  e. 
_V )
234, 22syl 14 . . 3  |-  ( ph  ->  ( +g  `  R
)  e.  _V )
2418, 23eqeltrid 2292 . 2  |-  ( ph  ->  .x.  e.  _V )
251, 2, 3, 4, 5, 6, 7, 20, 24qusaddvallemg 13165 1  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772   class class class wbr 4044    |-> cmpt 4105    Fn wfn 5266   ` cfv 5271  (class class class)co 5944    Er wer 6617   [cec 6618   /.cqs 6619   Basecbs 12832   +g cplusg 12909    /.s cqus 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-er 6620  df-ec 6622  df-qs 6626  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mulr 12923  df-iimas 13134  df-qus 13135
This theorem is referenced by:  qusadd  13570
  Copyright terms: Public domain W3C validator