| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > qusaddflemg | Unicode version | ||
| Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| qusaddf.u | 
 | 
| qusaddf.v | 
 | 
| qusaddf.r | 
 | 
| qusaddf.z | 
 | 
| qusaddf.e | 
 | 
| qusaddf.c | 
 | 
| qusaddflem.f | 
 | 
| qusaddflem.g | 
 | 
| qusaddflemg.x | 
 | 
| Ref | Expression | 
|---|---|
| qusaddflemg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qusaddf.u | 
. . 3
 | |
| 2 | qusaddf.v | 
. . 3
 | |
| 3 | qusaddflem.f | 
. . 3
 | |
| 4 | qusaddf.r | 
. . . 4
 | |
| 5 | basfn 12736 | 
. . . . . 6
 | |
| 6 | qusaddf.z | 
. . . . . . 7
 | |
| 7 | 6 | elexd 2776 | 
. . . . . 6
 | 
| 8 | funfvex 5575 | 
. . . . . . 7
 | |
| 9 | 8 | funfni 5358 | 
. . . . . 6
 | 
| 10 | 5, 7, 9 | sylancr 414 | 
. . . . 5
 | 
| 11 | 2, 10 | eqeltrd 2273 | 
. . . 4
 | 
| 12 | erex 6616 | 
. . . 4
 | |
| 13 | 4, 11, 12 | sylc 62 | 
. . 3
 | 
| 14 | 1, 2, 3, 13, 6 | quslem 12967 | 
. 2
 | 
| 15 | qusaddf.c | 
. . 3
 | |
| 16 | qusaddf.e | 
. . 3
 | |
| 17 | 4, 11, 3, 15, 16 | ercpbl 12974 | 
. 2
 | 
| 18 | qusaddflem.g | 
. 2
 | |
| 19 | qusaddflemg.x | 
. 2
 | |
| 20 | 14, 17, 18, 11, 19, 15 | imasaddflemg 12959 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-er 6592 df-ec 6594 df-qs 6598 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 | 
| This theorem is referenced by: qusaddf 12979 qusmulf 12981 | 
| Copyright terms: Public domain | W3C validator |