ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusaddflemg Unicode version

Theorem qusaddflemg 13281
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusaddf.r  |-  ( ph  ->  .~  Er  V )
qusaddf.z  |-  ( ph  ->  R  e.  Z )
qusaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
qusaddflem.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusaddflem.g  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
qusaddflemg.x  |-  ( ph  ->  .x.  e.  W )
Assertion
Ref Expression
qusaddflemg  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Distinct variable groups:    a, b, p, q, x,  .~    F, a, b, p, q    ph, a,
b, p, q, x    V, a, b, p, q, x    R, p, q, x    .x. , p, q, x    .xb , a,
b, p, q
Allowed substitution hints:    R( a, b)    .xb (
x)    .x. ( a, b)    U( x, q, p, a, b)    F( x)    W( x, q, p, a, b)    Z( x, q, p, a, b)

Proof of Theorem qusaddflemg
StepHypRef Expression
1 qusaddf.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusaddf.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 qusaddflem.f . . 3  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 qusaddf.r . . . 4  |-  ( ph  ->  .~  Er  V )
5 basfn 13005 . . . . . 6  |-  Base  Fn  _V
6 qusaddf.z . . . . . . 7  |-  ( ph  ->  R  e.  Z )
76elexd 2790 . . . . . 6  |-  ( ph  ->  R  e.  _V )
8 funfvex 5616 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5395 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2284 . . . 4  |-  ( ph  ->  V  e.  _V )
12 erex 6667 . . . 4  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . 3  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6quslem 13271 . 2  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
15 qusaddf.c . . 3  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
16 qusaddf.e . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
174, 11, 3, 15, 16ercpbl 13278 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
18 qusaddflem.g . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
19 qusaddflemg.x . 2  |-  ( ph  ->  .x.  e.  W )
2014, 17, 18, 11, 19, 15imasaddflemg 13263 1  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   <.cop 3646   U_ciun 3941   class class class wbr 4059    |-> cmpt 4121    X. cxp 4691    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967    Er wer 6640   [cec 6641   /.cqs 6642   Basecbs 12947    /.s cqus 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-er 6643  df-ec 6645  df-qs 6649  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953
This theorem is referenced by:  qusaddf  13283  qusmulf  13285
  Copyright terms: Public domain W3C validator