ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusaddflemg Unicode version

Theorem qusaddflemg 12920
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusaddf.r  |-  ( ph  ->  .~  Er  V )
qusaddf.z  |-  ( ph  ->  R  e.  Z )
qusaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
qusaddflem.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusaddflem.g  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
qusaddflemg.x  |-  ( ph  ->  .x.  e.  W )
Assertion
Ref Expression
qusaddflemg  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Distinct variable groups:    a, b, p, q, x,  .~    F, a, b, p, q    ph, a,
b, p, q, x    V, a, b, p, q, x    R, p, q, x    .x. , p, q, x    .xb , a,
b, p, q
Allowed substitution hints:    R( a, b)    .xb (
x)    .x. ( a, b)    U( x, q, p, a, b)    F( x)    W( x, q, p, a, b)    Z( x, q, p, a, b)

Proof of Theorem qusaddflemg
StepHypRef Expression
1 qusaddf.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusaddf.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 qusaddflem.f . . 3  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 qusaddf.r . . . 4  |-  ( ph  ->  .~  Er  V )
5 basfn 12679 . . . . . 6  |-  Base  Fn  _V
6 qusaddf.z . . . . . . 7  |-  ( ph  ->  R  e.  Z )
76elexd 2773 . . . . . 6  |-  ( ph  ->  R  e.  _V )
8 funfvex 5572 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5355 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2270 . . . 4  |-  ( ph  ->  V  e.  _V )
12 erex 6613 . . . 4  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . 3  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6quslem 12910 . 2  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
15 qusaddf.c . . 3  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
16 qusaddf.e . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
174, 11, 3, 15, 16ercpbl 12917 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
18 qusaddflem.g . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
19 qusaddflemg.x . 2  |-  ( ph  ->  .x.  e.  W )
2014, 17, 18, 11, 19, 15imasaddflemg 12902 1  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3619   <.cop 3622   U_ciun 3913   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919    Er wer 6586   [cec 6587   /.cqs 6588   Basecbs 12621    /.s cqus 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-er 6589  df-ec 6591  df-qs 6595  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627
This theorem is referenced by:  qusaddf  12922  qusmulf  12924
  Copyright terms: Public domain W3C validator