ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmulval Unicode version

Theorem qusmulval 13365
Description: The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusaddf.r  |-  ( ph  ->  .~  Er  V )
qusaddf.z  |-  ( ph  ->  R  e.  Z )
qusaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
qusmulf.p  |-  .x.  =  ( .r `  R )
qusmulf.a  |-  .xb  =  ( .r `  U )
Assertion
Ref Expression
qusmulval  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Distinct variable groups:    a, b, p, q,  .~    ph, a, b, p, q    V, a, b, p, q    R, p, q    .x. , p, q    X, p, q    .xb , a,
b, p, q    Y, p, q
Allowed substitution hints:    R( a, b)    .x. ( a, b)    U( q, p, a, b)    X( a, b)    Y( a, b)    Z( q, p, a, b)

Proof of Theorem qusmulval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qusaddf.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusaddf.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 qusaddf.r . 2  |-  ( ph  ->  .~  Er  V )
4 qusaddf.z . 2  |-  ( ph  ->  R  e.  Z )
5 qusaddf.e . 2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
6 qusaddf.c . 2  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
7 eqid 2229 . 2  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
8 basfn 13086 . . . . . . 7  |-  Base  Fn  _V
94elexd 2813 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
10 funfvex 5643 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1110funfni 5422 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
128, 9, 11sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
132, 12eqeltrd 2306 . . . . 5  |-  ( ph  ->  V  e.  _V )
14 erex 6702 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
153, 13, 14sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
161, 2, 7, 15, 4qusval 13351 . . 3  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
171, 2, 7, 15, 4quslem 13352 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  ) : V -onto-> ( V /.  .~  ) )
18 qusmulf.p . . 3  |-  .x.  =  ( .r `  R )
19 qusmulf.a . . 3  |-  .xb  =  ( .r `  U )
2016, 2, 17, 4, 18, 19imasmulr 13337 . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. (
( x  e.  V  |->  [ x ]  .~  ) `  p ) ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  q
) >. ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  ( p  .x.  q
) ) >. } )
21 mulrslid 13160 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2221slotex 13054 . . . 4  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
234, 22syl 14 . . 3  |-  ( ph  ->  ( .r `  R
)  e.  _V )
2418, 23eqeltrid 2316 . 2  |-  ( ph  ->  .x.  e.  _V )
251, 2, 3, 4, 5, 6, 7, 20, 24qusaddvallemg 13361 1  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4082    |-> cmpt 4144    Fn wfn 5312   ` cfv 5317  (class class class)co 6000    Er wer 6675   [cec 6676   /.cqs 6677   Basecbs 13027   .rcmulr 13106    /.s cqus 13328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-er 6678  df-ec 6680  df-qs 6684  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-iimas 13330  df-qus 13331
This theorem is referenced by:  qusrhm  14486  qusmul2  14487  qusmulrng  14490
  Copyright terms: Public domain W3C validator