ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmulf Unicode version

Theorem qusmulf 12775
Description: The multiplication in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
qusaddf.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusaddf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusaddf.r  |-  ( ph  ->  .~  Er  V )
qusaddf.z  |-  ( ph  ->  R  e.  Z )
qusaddf.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusaddf.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
qusmulf.p  |-  .x.  =  ( .r `  R )
qusmulf.a  |-  .xb  =  ( .r `  U )
Assertion
Ref Expression
qusmulf  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Distinct variable groups:    a, b, p, q,  .~    ph, a, b, p, q    V, a, b, p, q    R, p, q    .x. , p, q    .xb , a, b, p, q
Allowed substitution hints:    R( a, b)    .x. ( a, b)    U( q, p, a, b)    Z( q, p, a, b)

Proof of Theorem qusmulf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qusaddf.u . 2  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusaddf.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 qusaddf.r . 2  |-  ( ph  ->  .~  Er  V )
4 qusaddf.z . 2  |-  ( ph  ->  R  e.  Z )
5 qusaddf.e . 2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
6 qusaddf.c . 2  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
7 eqid 2187 . 2  |-  ( x  e.  V  |->  [ x ]  .~  )  =  ( x  e.  V  |->  [ x ]  .~  )
8 basfn 12533 . . . . . . 7  |-  Base  Fn  _V
94elexd 2762 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
10 funfvex 5544 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1110funfni 5328 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
128, 9, 11sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
132, 12eqeltrd 2264 . . . . 5  |-  ( ph  ->  V  e.  _V )
14 erex 6572 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
153, 13, 14sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
161, 2, 7, 15, 4qusval 12761 . . 3  |-  ( ph  ->  U  =  ( ( x  e.  V  |->  [ x ]  .~  )  "s  R ) )
171, 2, 7, 15, 4quslem 12762 . . 3  |-  ( ph  ->  ( x  e.  V  |->  [ x ]  .~  ) : V -onto-> ( V /.  .~  ) )
18 qusmulf.p . . 3  |-  .x.  =  ( .r `  R )
19 qusmulf.a . . 3  |-  .xb  =  ( .r `  U )
2016, 2, 17, 4, 18, 19imasmulr 12747 . 2  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. (
( x  e.  V  |->  [ x ]  .~  ) `  p ) ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  q
) >. ,  ( ( x  e.  V  |->  [ x ]  .~  ) `  ( p  .x.  q
) ) >. } )
21 mulrslid 12604 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2221slotex 12502 . . . 4  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
234, 22syl 14 . . 3  |-  ( ph  ->  ( .r `  R
)  e.  _V )
2418, 23eqeltrid 2274 . 2  |-  ( ph  ->  .x.  e.  _V )
251, 2, 3, 4, 5, 6, 7, 20, 24qusaddflemg 12771 1  |-  ( ph  -> 
.xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   _Vcvv 2749   class class class wbr 4015    |-> cmpt 4076    X. cxp 4636    Fn wfn 5223   -->wf 5224   ` cfv 5228  (class class class)co 5888    Er wer 6545   [cec 6546   /.cqs 6547   Basecbs 12475   .rcmulr 12551    /.s cqus 12738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-tp 3612  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-er 6548  df-ec 6550  df-qs 6554  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-mulr 12564  df-iimas 12740  df-qus 12741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator