ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf2 Unicode version

Theorem eroprf2 6688
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
eropr2.1  |-  J  =  ( A /.  .~  )
eropr2.2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [ q ]  .~  )  /\  z  =  [ (
p  .+  q ) ]  .~  ) }
eropr2.3  |-  ( ph  ->  .~  e.  X )
eropr2.4  |-  ( ph  ->  .~  Er  U )
eropr2.5  |-  ( ph  ->  A  C_  U )
eropr2.6  |-  ( ph  ->  .+  : ( A  X.  A ) --> A )
eropr2.7  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  A  /\  u  e.  A
) ) )  -> 
( ( r  .~  s  /\  t  .~  u
)  ->  ( r  .+  t )  .~  (
s  .+  u )
) )
Assertion
Ref Expression
eroprf2  |-  ( ph  -> 
.+^  : ( J  X.  J ) --> J )
Distinct variable groups:    q, p, r, s, t, u, x, y, z, A    X, p, q, r, s, t, u, z    .+ , p, q, r, s, t, u, x, y, z    .~ , p, q, r, s, t, u, x, y, z    J, p, q, x, y, z    ph, p, q, r, s, t, u, x, y, z
Allowed substitution hints:    .+^ ( x, y, z, u, t, s, r, q, p)    U( x, y, z, u, t, s, r, q, p)    J( u, t, s, r)    X( x, y)

Proof of Theorem eroprf2
StepHypRef Expression
1 eropr2.1 . 2  |-  J  =  ( A /.  .~  )
2 eropr2.3 . 2  |-  ( ph  ->  .~  e.  X )
3 eropr2.4 . 2  |-  ( ph  ->  .~  Er  U )
4 eropr2.5 . 2  |-  ( ph  ->  A  C_  U )
5 eropr2.6 . 2  |-  ( ph  ->  .+  : ( A  X.  A ) --> A )
6 eropr2.7 . 2  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  A  /\  u  e.  A
) ) )  -> 
( ( r  .~  s  /\  t  .~  u
)  ->  ( r  .+  t )  .~  (
s  .+  u )
) )
7 eropr2.2 . 2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [ q ]  .~  )  /\  z  =  [ (
p  .+  q ) ]  .~  ) }
81, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1eroprf 6687 1  |-  ( ph  -> 
.+^  : ( J  X.  J ) --> J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   class class class wbr 4033    X. cxp 4661   -->wf 5254  (class class class)co 5922   {coprab 5923    Er wer 6589   [cec 6590   /.cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-er 6592  df-ec 6594  df-qs 6598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator