ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf2 Unicode version

Theorem eroprf2 6776
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
eropr2.1  |-  J  =  ( A /.  .~  )
eropr2.2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [ q ]  .~  )  /\  z  =  [ (
p  .+  q ) ]  .~  ) }
eropr2.3  |-  ( ph  ->  .~  e.  X )
eropr2.4  |-  ( ph  ->  .~  Er  U )
eropr2.5  |-  ( ph  ->  A  C_  U )
eropr2.6  |-  ( ph  ->  .+  : ( A  X.  A ) --> A )
eropr2.7  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  A  /\  u  e.  A
) ) )  -> 
( ( r  .~  s  /\  t  .~  u
)  ->  ( r  .+  t )  .~  (
s  .+  u )
) )
Assertion
Ref Expression
eroprf2  |-  ( ph  -> 
.+^  : ( J  X.  J ) --> J )
Distinct variable groups:    q, p, r, s, t, u, x, y, z, A    X, p, q, r, s, t, u, z    .+ , p, q, r, s, t, u, x, y, z    .~ , p, q, r, s, t, u, x, y, z    J, p, q, x, y, z    ph, p, q, r, s, t, u, x, y, z
Allowed substitution hints:    .+^ ( x, y, z, u, t, s, r, q, p)    U( x, y, z, u, t, s, r, q, p)    J( u, t, s, r)    X( x, y)

Proof of Theorem eroprf2
StepHypRef Expression
1 eropr2.1 . 2  |-  J  =  ( A /.  .~  )
2 eropr2.3 . 2  |-  ( ph  ->  .~  e.  X )
3 eropr2.4 . 2  |-  ( ph  ->  .~  Er  U )
4 eropr2.5 . 2  |-  ( ph  ->  A  C_  U )
5 eropr2.6 . 2  |-  ( ph  ->  .+  : ( A  X.  A ) --> A )
6 eropr2.7 . 2  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  A  /\  u  e.  A
) ) )  -> 
( ( r  .~  s  /\  t  .~  u
)  ->  ( r  .+  t )  .~  (
s  .+  u )
) )
7 eropr2.2 . 2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [ q ]  .~  )  /\  z  =  [ (
p  .+  q ) ]  .~  ) }
81, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1eroprf 6775 1  |-  ( ph  -> 
.+^  : ( J  X.  J ) --> J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509    C_ wss 3197   class class class wbr 4083    X. cxp 4717   -->wf 5314  (class class class)co 6001   {coprab 6002    Er wer 6677   [cec 6678   /.cqs 6679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-er 6680  df-ec 6682  df-qs 6686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator