ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf2 Unicode version

Theorem eroprf2 6656
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
eropr2.1  |-  J  =  ( A /.  .~  )
eropr2.2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [ q ]  .~  )  /\  z  =  [ (
p  .+  q ) ]  .~  ) }
eropr2.3  |-  ( ph  ->  .~  e.  X )
eropr2.4  |-  ( ph  ->  .~  Er  U )
eropr2.5  |-  ( ph  ->  A  C_  U )
eropr2.6  |-  ( ph  ->  .+  : ( A  X.  A ) --> A )
eropr2.7  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  A  /\  u  e.  A
) ) )  -> 
( ( r  .~  s  /\  t  .~  u
)  ->  ( r  .+  t )  .~  (
s  .+  u )
) )
Assertion
Ref Expression
eroprf2  |-  ( ph  -> 
.+^  : ( J  X.  J ) --> J )
Distinct variable groups:    q, p, r, s, t, u, x, y, z, A    X, p, q, r, s, t, u, z    .+ , p, q, r, s, t, u, x, y, z    .~ , p, q, r, s, t, u, x, y, z    J, p, q, x, y, z    ph, p, q, r, s, t, u, x, y, z
Allowed substitution hints:    .+^ ( x, y, z, u, t, s, r, q, p)    U( x, y, z, u, t, s, r, q, p)    J( u, t, s, r)    X( x, y)

Proof of Theorem eroprf2
StepHypRef Expression
1 eropr2.1 . 2  |-  J  =  ( A /.  .~  )
2 eropr2.3 . 2  |-  ( ph  ->  .~  e.  X )
3 eropr2.4 . 2  |-  ( ph  ->  .~  Er  U )
4 eropr2.5 . 2  |-  ( ph  ->  A  C_  U )
5 eropr2.6 . 2  |-  ( ph  ->  .+  : ( A  X.  A ) --> A )
6 eropr2.7 . 2  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  A  /\  u  e.  A
) ) )  -> 
( ( r  .~  s  /\  t  .~  u
)  ->  ( r  .+  t )  .~  (
s  .+  u )
) )
7 eropr2.2 . 2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [ q ]  .~  )  /\  z  =  [ (
p  .+  q ) ]  .~  ) }
81, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1eroprf 6655 1  |-  ( ph  -> 
.+^  : ( J  X.  J ) --> J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   E.wrex 2469    C_ wss 3144   class class class wbr 4018    X. cxp 4642   -->wf 5231  (class class class)co 5897   {coprab 5898    Er wer 6557   [cec 6558   /.cqs 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-er 6560  df-ec 6562  df-qs 6566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator