ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf2 GIF version

Theorem eroprf2 6619
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
eropr2.1 ð― = (ðī / ∞ )
eropr2.2 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðī ((ð‘Ĩ = [𝑝] ∞ ∧ ð‘Ķ = [𝑞] ∞ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∞ )}
eropr2.3 (𝜑 → ∞ ∈ 𝑋)
eropr2.4 (𝜑 → ∞ Er 𝑈)
eropr2.5 (𝜑 → ðī ⊆ 𝑈)
eropr2.6 (𝜑 → + :(ðī × ðī)âŸķðī)
eropr2.7 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðī ∧ ð‘Ē ∈ ðī))) → ((𝑟 ∞ 𝑠 ∧ ð‘Ą ∞ ð‘Ē) → (𝑟 + ð‘Ą) ∞ (𝑠 + ð‘Ē)))
Assertion
Ref Expression
eroprf2 (𝜑 → âĻĢ :(ð― × ð―)âŸķð―)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧,ðī   𝑋,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,𝑧   + ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ∞ ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ð―,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧
Allowed substitution hints:   âĻĢ (ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑈(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   ð―(ð‘Ē,ð‘Ą,𝑠,𝑟)   𝑋(ð‘Ĩ,ð‘Ķ)

Proof of Theorem eroprf2
StepHypRef Expression
1 eropr2.1 . 2 ð― = (ðī / ∞ )
2 eropr2.3 . 2 (𝜑 → ∞ ∈ 𝑋)
3 eropr2.4 . 2 (𝜑 → ∞ Er 𝑈)
4 eropr2.5 . 2 (𝜑 → ðī ⊆ 𝑈)
5 eropr2.6 . 2 (𝜑 → + :(ðī × ðī)âŸķðī)
6 eropr2.7 . 2 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðī ∧ ð‘Ē ∈ ðī))) → ((𝑟 ∞ 𝑠 ∧ ð‘Ą ∞ ð‘Ē) → (𝑟 + ð‘Ą) ∞ (𝑠 + ð‘Ē)))
7 eropr2.2 . 2 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðī ((ð‘Ĩ = [𝑝] ∞ ∧ ð‘Ķ = [𝑞] ∞ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∞ )}
81, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1eroprf 6618 1 (𝜑 → âĻĢ :(ð― × ð―)âŸķð―)
Colors of variables: wff set class
Syntax hints:   → wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2146  âˆƒwrex 2454   ⊆ wss 3127   class class class wbr 3998   × cxp 4618  âŸķwf 5204  (class class class)co 5865  {coprab 5866   Er wer 6522  [cec 6523   / cqs 6524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-er 6525  df-ec 6527  df-qs 6531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator