ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf2 GIF version

Theorem eroprf2 6739
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
eropr2.1 𝐽 = (𝐴 / )
eropr2.2 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐴 ((𝑥 = [𝑝] 𝑦 = [𝑞] ) ∧ 𝑧 = [(𝑝 + 𝑞)] )}
eropr2.3 (𝜑𝑋)
eropr2.4 (𝜑 Er 𝑈)
eropr2.5 (𝜑𝐴𝑈)
eropr2.6 (𝜑+ :(𝐴 × 𝐴)⟶𝐴)
eropr2.7 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐴𝑢𝐴))) → ((𝑟 𝑠𝑡 𝑢) → (𝑟 + 𝑡) (𝑠 + 𝑢)))
Assertion
Ref Expression
eroprf2 (𝜑 :(𝐽 × 𝐽)⟶𝐽)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧,𝐴   𝑋,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑧   + ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐽,𝑝,𝑞,𝑥,𝑦,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑈(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝐽(𝑢,𝑡,𝑠,𝑟)   𝑋(𝑥,𝑦)

Proof of Theorem eroprf2
StepHypRef Expression
1 eropr2.1 . 2 𝐽 = (𝐴 / )
2 eropr2.3 . 2 (𝜑𝑋)
3 eropr2.4 . 2 (𝜑 Er 𝑈)
4 eropr2.5 . 2 (𝜑𝐴𝑈)
5 eropr2.6 . 2 (𝜑+ :(𝐴 × 𝐴)⟶𝐴)
6 eropr2.7 . 2 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐴𝑢𝐴))) → ((𝑟 𝑠𝑡 𝑢) → (𝑟 + 𝑡) (𝑠 + 𝑢)))
7 eropr2.2 . 2 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐴 ((𝑥 = [𝑝] 𝑦 = [𝑞] ) ∧ 𝑧 = [(𝑝 + 𝑞)] )}
81, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1eroprf 6738 1 (𝜑 :(𝐽 × 𝐽)⟶𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wrex 2487  wss 3174   class class class wbr 4059   × cxp 4691  wf 5286  (class class class)co 5967  {coprab 5968   Er wer 6640  [cec 6641   / cqs 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-er 6643  df-ec 6645  df-qs 6649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator