![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eroprf2 | GIF version |
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
eropr2.1 | âĒ ð― = (ðī / âž ) |
eropr2.2 | âĒ âĻĢ = {âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ âð â ðī âð â ðī ((ðĨ = [ð] ➠⧠ðĶ = [ð] âž ) ⧠ð§ = [(ð + ð)] âž )} |
eropr2.3 | âĒ (ð â âž â ð) |
eropr2.4 | âĒ (ð â âž Er ð) |
eropr2.5 | âĒ (ð â ðī â ð) |
eropr2.6 | âĒ (ð â + :(ðī Ã ðī)âķðī) |
eropr2.7 | âĒ ((ð ⧠((ð â ðī ⧠ð â ðī) ⧠(ðĄ â ðī ⧠ðĒ â ðī))) â ((ð âž ð ⧠ðĄ âž ðĒ) â (ð + ðĄ) âž (ð + ðĒ))) |
Ref | Expression |
---|---|
eroprf2 | âĒ (ð â âĻĢ :(ð― Ã ð―)âķð―) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eropr2.1 | . 2 âĒ ð― = (ðī / âž ) | |
2 | eropr2.3 | . 2 âĒ (ð â âž â ð) | |
3 | eropr2.4 | . 2 âĒ (ð â âž Er ð) | |
4 | eropr2.5 | . 2 âĒ (ð â ðī â ð) | |
5 | eropr2.6 | . 2 âĒ (ð â + :(ðī Ã ðī)âķðī) | |
6 | eropr2.7 | . 2 âĒ ((ð ⧠((ð â ðī ⧠ð â ðī) ⧠(ðĄ â ðī ⧠ðĒ â ðī))) â ((ð âž ð ⧠ðĄ âž ðĒ) â (ð + ðĄ) âž (ð + ðĒ))) | |
7 | eropr2.2 | . 2 âĒ âĻĢ = {âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ âð â ðī âð â ðī ((ðĨ = [ð] ➠⧠ðĶ = [ð] âž ) ⧠ð§ = [(ð + ð)] âž )} | |
8 | 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1 | eroprf 6630 | 1 âĒ (ð â âĻĢ :(ð― Ã ð―)âķð―) |
Colors of variables: wff set class |
Syntax hints: â wi 4 ⧠wa 104 = wceq 1353 â wcel 2148 âwrex 2456 â wss 3131 class class class wbr 4005 à cxp 4626 âķwf 5214 (class class class)co 5877 {coprab 5878 Er wer 6534 [cec 6535 / cqs 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-er 6537 df-ec 6539 df-qs 6543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |