| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eroprf2 | GIF version | ||
| Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| eropr2.1 | ⊢ 𝐽 = (𝐴 / ∼ ) |
| eropr2.2 | ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} |
| eropr2.3 | ⊢ (𝜑 → ∼ ∈ 𝑋) |
| eropr2.4 | ⊢ (𝜑 → ∼ Er 𝑈) |
| eropr2.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| eropr2.6 | ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) |
| eropr2.7 | ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) |
| Ref | Expression |
|---|---|
| eroprf2 | ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr2.1 | . 2 ⊢ 𝐽 = (𝐴 / ∼ ) | |
| 2 | eropr2.3 | . 2 ⊢ (𝜑 → ∼ ∈ 𝑋) | |
| 3 | eropr2.4 | . 2 ⊢ (𝜑 → ∼ Er 𝑈) | |
| 4 | eropr2.5 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | |
| 5 | eropr2.6 | . 2 ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) | |
| 6 | eropr2.7 | . 2 ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) | |
| 7 | eropr2.2 | . 2 ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} | |
| 8 | 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1 | eroprf 6714 | 1 ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 ⊆ wss 3165 class class class wbr 4043 × cxp 4672 ⟶wf 5266 (class class class)co 5943 {coprab 5944 Er wer 6616 [cec 6617 / cqs 6618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-er 6619 df-ec 6621 df-qs 6625 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |