ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf2 GIF version

Theorem eroprf2 6631
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
eropr2.1 ð― = (ðī / ∞ )
eropr2.2 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðī ((ð‘Ĩ = [𝑝] ∞ ∧ ð‘Ķ = [𝑞] ∞ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∞ )}
eropr2.3 (𝜑 → ∞ ∈ 𝑋)
eropr2.4 (𝜑 → ∞ Er 𝑈)
eropr2.5 (𝜑 → ðī ⊆ 𝑈)
eropr2.6 (𝜑 → + :(ðī × ðī)âŸķðī)
eropr2.7 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðī ∧ ð‘Ē ∈ ðī))) → ((𝑟 ∞ 𝑠 ∧ ð‘Ą ∞ ð‘Ē) → (𝑟 + ð‘Ą) ∞ (𝑠 + ð‘Ē)))
Assertion
Ref Expression
eroprf2 (𝜑 → âĻĢ :(ð― × ð―)âŸķð―)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧,ðī   𝑋,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,𝑧   + ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ∞ ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ð―,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧
Allowed substitution hints:   âĻĢ (ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑈(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   ð―(ð‘Ē,ð‘Ą,𝑠,𝑟)   𝑋(ð‘Ĩ,ð‘Ķ)

Proof of Theorem eroprf2
StepHypRef Expression
1 eropr2.1 . 2 ð― = (ðī / ∞ )
2 eropr2.3 . 2 (𝜑 → ∞ ∈ 𝑋)
3 eropr2.4 . 2 (𝜑 → ∞ Er 𝑈)
4 eropr2.5 . 2 (𝜑 → ðī ⊆ 𝑈)
5 eropr2.6 . 2 (𝜑 → + :(ðī × ðī)âŸķðī)
6 eropr2.7 . 2 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðī ∧ ð‘Ē ∈ ðī))) → ((𝑟 ∞ 𝑠 ∧ ð‘Ą ∞ ð‘Ē) → (𝑟 + ð‘Ą) ∞ (𝑠 + ð‘Ē)))
7 eropr2.2 . 2 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðī ((ð‘Ĩ = [𝑝] ∞ ∧ ð‘Ķ = [𝑞] ∞ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∞ )}
81, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1eroprf 6630 1 (𝜑 → âĻĢ :(ð― × ð―)âŸķð―)
Colors of variables: wff set class
Syntax hints:   → wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  âˆƒwrex 2456   ⊆ wss 3131   class class class wbr 4005   × cxp 4626  âŸķwf 5214  (class class class)co 5877  {coprab 5878   Er wer 6534  [cec 6535   / cqs 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-er 6537  df-ec 6539  df-qs 6543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator