ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnf1o Unicode version

Theorem nnf1o 11397
Description: Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
Hypotheses
Ref Expression
nnf1o.mn  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
nnf1o.m  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
nnf1o.n  |-  ( ph  ->  G : ( 1 ... N ) -1-1-onto-> A )
Assertion
Ref Expression
nnf1o  |-  ( ph  ->  N  =  M )

Proof of Theorem nnf1o
StepHypRef Expression
1 1zzd 9293 . . . 4  |-  ( ph  ->  1  e.  ZZ )
2 nnf1o.mn . . . . . 6  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
32simprd 114 . . . . 5  |-  ( ph  ->  N  e.  NN )
43nnzd 9387 . . . 4  |-  ( ph  ->  N  e.  ZZ )
51, 4fzfigd 10444 . . 3  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
6 nnf1o.m . . . . 5  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
7 f1ocnv 5486 . . . . 5  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  `' F : A -1-1-onto-> ( 1 ... M
) )
86, 7syl 14 . . . 4  |-  ( ph  ->  `' F : A -1-1-onto-> ( 1 ... M ) )
9 nnf1o.n . . . 4  |-  ( ph  ->  G : ( 1 ... N ) -1-1-onto-> A )
10 f1oco 5496 . . . 4  |-  ( ( `' F : A -1-1-onto-> ( 1 ... M )  /\  G : ( 1 ... N ) -1-1-onto-> A )  ->  ( `' F  o.  G
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
118, 9, 10syl2anc 411 . . 3  |-  ( ph  ->  ( `' F  o.  G ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
125, 11fihasheqf1od 10782 . 2  |-  ( ph  ->  ( `  ( 1 ... N ) )  =  ( `  ( 1 ... M ) ) )
13 nnnn0 9196 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
14 hashfz1 10776 . . 3  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
153, 13, 143syl 17 . 2  |-  ( ph  ->  ( `  ( 1 ... N ) )  =  N )
162simpld 112 . . 3  |-  ( ph  ->  M  e.  NN )
17 nnnn0 9196 . . 3  |-  ( M  e.  NN  ->  M  e.  NN0 )
18 hashfz1 10776 . . 3  |-  ( M  e.  NN0  ->  ( `  (
1 ... M ) )  =  M )
1916, 17, 183syl 17 . 2  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  M )
2012, 15, 193eqtr3d 2228 1  |-  ( ph  ->  N  =  M )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   `'ccnv 4637    o. ccom 4642   -1-1-onto->wf1o 5227   ` cfv 5228  (class class class)co 5888   1c1 7825   NNcn 8932   NN0cn0 9189   ...cfz 10021  ♯chash 10768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-1o 6430  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-fz 10022  df-ihash 10769
This theorem is referenced by:  summodclem3  11401  prodmodclem3  11596
  Copyright terms: Public domain W3C validator