ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnf1o Unicode version

Theorem nnf1o 11317
Description: Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
Hypotheses
Ref Expression
nnf1o.mn  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
nnf1o.m  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
nnf1o.n  |-  ( ph  ->  G : ( 1 ... N ) -1-1-onto-> A )
Assertion
Ref Expression
nnf1o  |-  ( ph  ->  N  =  M )

Proof of Theorem nnf1o
StepHypRef Expression
1 1zzd 9218 . . . 4  |-  ( ph  ->  1  e.  ZZ )
2 nnf1o.mn . . . . . 6  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
32simprd 113 . . . . 5  |-  ( ph  ->  N  e.  NN )
43nnzd 9312 . . . 4  |-  ( ph  ->  N  e.  ZZ )
51, 4fzfigd 10366 . . 3  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
6 nnf1o.m . . . . 5  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
7 f1ocnv 5445 . . . . 5  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  `' F : A -1-1-onto-> ( 1 ... M
) )
86, 7syl 14 . . . 4  |-  ( ph  ->  `' F : A -1-1-onto-> ( 1 ... M ) )
9 nnf1o.n . . . 4  |-  ( ph  ->  G : ( 1 ... N ) -1-1-onto-> A )
10 f1oco 5455 . . . 4  |-  ( ( `' F : A -1-1-onto-> ( 1 ... M )  /\  G : ( 1 ... N ) -1-1-onto-> A )  ->  ( `' F  o.  G
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
118, 9, 10syl2anc 409 . . 3  |-  ( ph  ->  ( `' F  o.  G ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
125, 11fihasheqf1od 10703 . 2  |-  ( ph  ->  ( `  ( 1 ... N ) )  =  ( `  ( 1 ... M ) ) )
13 nnnn0 9121 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
14 hashfz1 10696 . . 3  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
153, 13, 143syl 17 . 2  |-  ( ph  ->  ( `  ( 1 ... N ) )  =  N )
162simpld 111 . . 3  |-  ( ph  ->  M  e.  NN )
17 nnnn0 9121 . . 3  |-  ( M  e.  NN  ->  M  e.  NN0 )
18 hashfz1 10696 . . 3  |-  ( M  e.  NN0  ->  ( `  (
1 ... M ) )  =  M )
1916, 17, 183syl 17 . 2  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  M )
2012, 15, 193eqtr3d 2206 1  |-  ( ph  ->  N  =  M )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   `'ccnv 4603    o. ccom 4608   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   1c1 7754   NNcn 8857   NN0cn0 9114   ...cfz 9944  ♯chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-ihash 10689
This theorem is referenced by:  summodclem3  11321  prodmodclem3  11516
  Copyright terms: Public domain W3C validator