ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oco GIF version

Theorem f1oco 5554
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
f1oco ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)

Proof of Theorem f1oco
StepHypRef Expression
1 df-f1o 5284 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
2 df-f1o 5284 . . 3 (𝐺:𝐴1-1-onto𝐵 ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵))
3 f1co 5502 . . . . 5 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
4 foco 5518 . . . . 5 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
53, 4anim12i 338 . . . 4 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
65an4s 588 . . 3 (((𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶) ∧ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
71, 2, 6syl2anb 291 . 2 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
8 df-f1o 5284 . 2 ((𝐹𝐺):𝐴1-1-onto𝐶 ↔ ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
97, 8sylibr 134 1 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  ccom 4684  1-1wf1 5274  ontowfo 5275  1-1-ontowf1o 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284
This theorem is referenced by:  isotr  5895  ener  6881  hashfacen  10994  nnf1o  11737  summodclem3  11741  fsumf1o  11751  prodmodclem3  11936  fprodf1o  11949  eulerthlemh  12603
  Copyright terms: Public domain W3C validator