![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1oco | GIF version |
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
f1oco | ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 5261 | . . 3 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
2 | df-f1o 5261 | . . 3 ⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) | |
3 | f1co 5471 | . . . . 5 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
4 | foco 5487 | . . . . 5 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) | |
5 | 3, 4 | anim12i 338 | . . . 4 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
6 | 5 | an4s 588 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶) ∧ (𝐺:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–onto→𝐵)) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
7 | 1, 2, 6 | syl2anb 291 | . 2 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) |
8 | df-f1o 5261 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) | |
9 | 7, 8 | sylibr 134 | 1 ⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝐺:𝐴–1-1-onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1-onto→𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∘ ccom 4663 –1-1→wf1 5251 –onto→wfo 5252 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 |
This theorem is referenced by: isotr 5859 ener 6833 hashfacen 10907 nnf1o 11519 summodclem3 11523 fsumf1o 11533 prodmodclem3 11718 fprodf1o 11731 eulerthlemh 12369 |
Copyright terms: Public domain | W3C validator |