ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oco GIF version

Theorem f1oco 5597
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
f1oco ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)

Proof of Theorem f1oco
StepHypRef Expression
1 df-f1o 5325 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶))
2 df-f1o 5325 . . 3 (𝐺:𝐴1-1-onto𝐵 ↔ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵))
3 f1co 5545 . . . . 5 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
4 foco 5561 . . . . 5 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
53, 4anim12i 338 . . . 4 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
65an4s 590 . . 3 (((𝐹:𝐵1-1𝐶𝐹:𝐵onto𝐶) ∧ (𝐺:𝐴1-1𝐵𝐺:𝐴onto𝐵)) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
71, 2, 6syl2anb 291 . 2 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
8 df-f1o 5325 . 2 ((𝐹𝐺):𝐴1-1-onto𝐶 ↔ ((𝐹𝐺):𝐴1-1𝐶 ∧ (𝐹𝐺):𝐴onto𝐶))
97, 8sylibr 134 1 ((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  ccom 4723  1-1wf1 5315  ontowfo 5316  1-1-ontowf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  isotr  5946  ener  6939  hashfacen  11066  nnf1o  11895  summodclem3  11899  fsumf1o  11909  prodmodclem3  12094  fprodf1o  12107  eulerthlemh  12761
  Copyright terms: Public domain W3C validator