ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemh Unicode version

Theorem eulerthlemh 12424
Description: Lemma for eulerth 12426. A permutation of  ( 1 ... ( phi `  N ) ). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 5-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerth.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerth.4  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
eulerth.h  |-  H  =  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) )
Assertion
Ref Expression
eulerthlemh  |-  ( ph  ->  H : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
Distinct variable groups:    y, A    y, F    y, N    ph, y
Allowed substitution hints:    S( y)    H( y)

Proof of Theorem eulerthlemh
Dummy variables  a  b  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.4 . . . 4  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
2 f1ocnv 5520 . . . 4  |-  ( F : ( 1 ... ( phi `  N
) ) -1-1-onto-> S  ->  `' F : S -1-1-onto-> ( 1 ... ( phi `  N ) ) )
31, 2syl 14 . . 3  |-  ( ph  ->  `' F : S -1-1-onto-> ( 1 ... ( phi `  N ) ) )
4 eulerth.1 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
5 eulerth.2 . . . . . . 7  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
6 eqid 2196 . . . . . . 7  |-  ( 1 ... ( phi `  N ) )  =  ( 1 ... ( phi `  N ) )
7 fveq2 5561 . . . . . . . . . 10  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
87oveq2d 5941 . . . . . . . . 9  |-  ( a  =  b  ->  ( A  x.  ( F `  a ) )  =  ( A  x.  ( F `  b )
) )
98oveq1d 5940 . . . . . . . 8  |-  ( a  =  b  ->  (
( A  x.  ( F `  a )
)  mod  N )  =  ( ( A  x.  ( F `  b ) )  mod 
N ) )
109cbvmptv 4130 . . . . . . 7  |-  ( a  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 a ) )  mod  N ) )  =  ( b  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  b ) )  mod  N ) )
114, 5, 6, 1, 10eulerthlem1 12420 . . . . . 6  |-  ( ph  ->  ( a  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  a )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
12 fveq2 5561 . . . . . . . . . 10  |-  ( a  =  y  ->  ( F `  a )  =  ( F `  y ) )
1312oveq2d 5941 . . . . . . . . 9  |-  ( a  =  y  ->  ( A  x.  ( F `  a ) )  =  ( A  x.  ( F `  y )
) )
1413oveq1d 5940 . . . . . . . 8  |-  ( a  =  y  ->  (
( A  x.  ( F `  a )
)  mod  N )  =  ( ( A  x.  ( F `  y ) )  mod 
N ) )
1514cbvmptv 4130 . . . . . . 7  |-  ( a  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 a ) )  mod  N ) )  =  ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) )
1615feq1i 5403 . . . . . 6  |-  ( ( a  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  a )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S  <-> 
( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
1711, 16sylib 122 . . . . 5  |-  ( ph  ->  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
184simp1d 1011 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
1918adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  N  e.  NN )
204simp2d 1012 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ZZ )
2120adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  A  e.  ZZ )
22 ssrab2 3269 . . . . . . . . . . . . 13  |-  { y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }  C_  (
0..^ N )
235, 22eqsstri 3216 . . . . . . . . . . . 12  |-  S  C_  ( 0..^ N )
24 fzo0ssnn0 10308 . . . . . . . . . . . . 13  |-  ( 0..^ N )  C_  NN0
25 nn0ssz 9361 . . . . . . . . . . . . 13  |-  NN0  C_  ZZ
2624, 25sstri 3193 . . . . . . . . . . . 12  |-  ( 0..^ N )  C_  ZZ
2723, 26sstri 3193 . . . . . . . . . . 11  |-  S  C_  ZZ
28 f1of 5507 . . . . . . . . . . . . . 14  |-  ( F : ( 1 ... ( phi `  N
) ) -1-1-onto-> S  ->  F :
( 1 ... ( phi `  N ) ) --> S )
291, 28syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) --> S )
3029adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  F :
( 1 ... ( phi `  N ) ) --> S )
31 simprl 529 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  u  e.  ( 1 ... ( phi `  N ) ) )
3230, 31ffvelcdmd 5701 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  u )  e.  S
)
3327, 32sselid 3182 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  u )  e.  ZZ )
3421, 33zmulcld 9471 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( A  x.  ( F `  u
) )  e.  ZZ )
3529ffvelcdmda 5700 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  v )  e.  S
)
3635adantrl 478 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  v )  e.  S
)
3727, 36sselid 3182 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  v )  e.  ZZ )
3821, 37zmulcld 9471 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( A  x.  ( F `  v
) )  e.  ZZ )
39 moddvds 11981 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  x.  ( F `  u )
)  e.  ZZ  /\  ( A  x.  ( F `  v )
)  e.  ZZ )  ->  ( ( ( A  x.  ( F `
 u ) )  mod  N )  =  ( ( A  x.  ( F `  v ) )  mod  N )  <-> 
N  ||  ( ( A  x.  ( F `  u ) )  -  ( A  x.  ( F `  v )
) ) ) )
4019, 34, 38, 39syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( (
( A  x.  ( F `  u )
)  mod  N )  =  ( ( A  x.  ( F `  v ) )  mod 
N )  <->  N  ||  (
( A  x.  ( F `  u )
)  -  ( A  x.  ( F `  v ) ) ) ) )
41 eqid 2196 . . . . . . . . . 10  |-  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) )  =  ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) )
42 fveq2 5561 . . . . . . . . . . . 12  |-  ( y  =  u  ->  ( F `  y )  =  ( F `  u ) )
4342oveq2d 5941 . . . . . . . . . . 11  |-  ( y  =  u  ->  ( A  x.  ( F `  y ) )  =  ( A  x.  ( F `  u )
) )
4443oveq1d 5940 . . . . . . . . . 10  |-  ( y  =  u  ->  (
( A  x.  ( F `  y )
)  mod  N )  =  ( ( A  x.  ( F `  u ) )  mod 
N ) )
45 zmodfzo 10456 . . . . . . . . . . 11  |-  ( ( ( A  x.  ( F `  u )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  u ) )  mod  N )  e.  ( 0..^ N ) )
4634, 19, 45syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( A  x.  ( F `  u ) )  mod 
N )  e.  ( 0..^ N ) )
4741, 44, 31, 46fvmptd3 5658 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  u )  =  ( ( A  x.  ( F `  u ) )  mod 
N ) )
48 fveq2 5561 . . . . . . . . . . . 12  |-  ( y  =  v  ->  ( F `  y )  =  ( F `  v ) )
4948oveq2d 5941 . . . . . . . . . . 11  |-  ( y  =  v  ->  ( A  x.  ( F `  y ) )  =  ( A  x.  ( F `  v )
) )
5049oveq1d 5940 . . . . . . . . . 10  |-  ( y  =  v  ->  (
( A  x.  ( F `  y )
)  mod  N )  =  ( ( A  x.  ( F `  v ) )  mod 
N ) )
51 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  v  e.  ( 1 ... ( phi `  N ) ) )
52 zmodfzo 10456 . . . . . . . . . . 11  |-  ( ( ( A  x.  ( F `  v )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  v ) )  mod  N )  e.  ( 0..^ N ) )
5338, 19, 52syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( A  x.  ( F `  v ) )  mod 
N )  e.  ( 0..^ N ) )
5441, 50, 51, 53fvmptd3 5658 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  v )  =  ( ( A  x.  ( F `  v ) )  mod 
N ) )
5547, 54eqeq12d 2211 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( (
( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  u )  =  ( ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) `
 v )  <->  ( ( A  x.  ( F `  u ) )  mod 
N )  =  ( ( A  x.  ( F `  v )
)  mod  N )
) )
5621zcnd 9466 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  A  e.  CC )
5733zcnd 9466 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  u )  e.  CC )
5837zcnd 9466 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  v )  e.  CC )
5956, 57, 58subdid 8457 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( A  x.  ( ( F `  u )  -  ( F `  v )
) )  =  ( ( A  x.  ( F `  u )
)  -  ( A  x.  ( F `  v ) ) ) )
6059breq2d 4046 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( N  ||  ( A  x.  (
( F `  u
)  -  ( F `
 v ) ) )  <->  N  ||  ( ( A  x.  ( F `
 u ) )  -  ( A  x.  ( F `  v ) ) ) ) )
6140, 55, 603bitr4d 220 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( (
( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  u )  =  ( ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) `
 v )  <->  N  ||  ( A  x.  ( ( F `  u )  -  ( F `  v ) ) ) ) )
6218nnzd 9464 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
6362, 20gcdcomd 12166 . . . . . . . . . 10  |-  ( ph  ->  ( N  gcd  A
)  =  ( A  gcd  N ) )
644simp3d 1013 . . . . . . . . . 10  |-  ( ph  ->  ( A  gcd  N
)  =  1 )
6563, 64eqtrd 2229 . . . . . . . . 9  |-  ( ph  ->  ( N  gcd  A
)  =  1 )
6665adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( N  gcd  A )  =  1 )
6762adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  N  e.  ZZ )
6833, 37zsubcld 9470 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( F `  u )  -  ( F `  v ) )  e.  ZZ )
69 coprmdvds 12285 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  (
( F `  u
)  -  ( F `
 v ) )  e.  ZZ )  -> 
( ( N  ||  ( A  x.  (
( F `  u
)  -  ( F `
 v ) ) )  /\  ( N  gcd  A )  =  1 )  ->  N  ||  ( ( F `  u )  -  ( F `  v )
) ) )
7067, 21, 68, 69syl3anc 1249 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( N  ||  ( A  x.  ( ( F `  u )  -  ( F `  v )
) )  /\  ( N  gcd  A )  =  1 )  ->  N  ||  ( ( F `  u )  -  ( F `  v )
) ) )
71 zq 9717 . . . . . . . . . . . . 13  |-  ( ( F `  u )  e.  ZZ  ->  ( F `  u )  e.  QQ )
7233, 71syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  u )  e.  QQ )
73 zq 9717 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  QQ )
7462, 73syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  QQ )
7574adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  N  e.  QQ )
7623, 32sselid 3182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  u )  e.  ( 0..^ N ) )
77 elfzole1 10248 . . . . . . . . . . . . 13  |-  ( ( F `  u )  e.  ( 0..^ N )  ->  0  <_  ( F `  u ) )
7876, 77syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  0  <_  ( F `  u ) )
79 elfzolt2 10249 . . . . . . . . . . . . 13  |-  ( ( F `  u )  e.  ( 0..^ N )  ->  ( F `  u )  <  N
)
8076, 79syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  u )  <  N
)
81 modqid 10458 . . . . . . . . . . . 12  |-  ( ( ( ( F `  u )  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
( F `  u
)  /\  ( F `  u )  <  N
) )  ->  (
( F `  u
)  mod  N )  =  ( F `  u ) )
8272, 75, 78, 80, 81syl22anc 1250 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( F `  u )  mod  N )  =  ( F `  u ) )
8327, 35sselid 3182 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  v )  e.  ZZ )
8483adantrl 478 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  v )  e.  ZZ )
85 zq 9717 . . . . . . . . . . . . 13  |-  ( ( F `  v )  e.  ZZ  ->  ( F `  v )  e.  QQ )
8684, 85syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  v )  e.  QQ )
8723, 35sselid 3182 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  v )  e.  ( 0..^ N ) )
88 elfzole1 10248 . . . . . . . . . . . . . 14  |-  ( ( F `  v )  e.  ( 0..^ N )  ->  0  <_  ( F `  v ) )
8987, 88syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( 1 ... ( phi `  N ) ) )  ->  0  <_  ( F `  v ) )
9089adantrl 478 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  0  <_  ( F `  v ) )
9187adantrl 478 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  v )  e.  ( 0..^ N ) )
92 elfzolt2 10249 . . . . . . . . . . . . 13  |-  ( ( F `  v )  e.  ( 0..^ N )  ->  ( F `  v )  <  N
)
9391, 92syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( F `  v )  <  N
)
94 modqid 10458 . . . . . . . . . . . 12  |-  ( ( ( ( F `  v )  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
( F `  v
)  /\  ( F `  v )  <  N
) )  ->  (
( F `  v
)  mod  N )  =  ( F `  v ) )
9586, 75, 90, 93, 94syl22anc 1250 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( F `  v )  mod  N )  =  ( F `  v ) )
9682, 95eqeq12d 2211 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( (
( F `  u
)  mod  N )  =  ( ( F `
 v )  mod 
N )  <->  ( F `  u )  =  ( F `  v ) ) )
97 moddvds 11981 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( F `  u )  e.  ZZ  /\  ( F `  v )  e.  ZZ )  ->  (
( ( F `  u )  mod  N
)  =  ( ( F `  v )  mod  N )  <->  N  ||  (
( F `  u
)  -  ( F `
 v ) ) ) )
9819, 33, 37, 97syl3anc 1249 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( (
( F `  u
)  mod  N )  =  ( ( F `
 v )  mod 
N )  <->  N  ||  (
( F `  u
)  -  ( F `
 v ) ) ) )
99 f1of1 5506 . . . . . . . . . . . 12  |-  ( F : ( 1 ... ( phi `  N
) ) -1-1-onto-> S  ->  F :
( 1 ... ( phi `  N ) )
-1-1-> S )
1001, 99syl 14 . . . . . . . . . . 11  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-> S
)
101 f1fveq 5822 . . . . . . . . . . 11  |-  ( ( F : ( 1 ... ( phi `  N ) ) -1-1-> S  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( F `  u )  =  ( F `  v )  <->  u  =  v ) )
102100, 101sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( F `  u )  =  ( F `  v )  <->  u  =  v ) )
10396, 98, 1023bitr3d 218 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( N  ||  ( ( F `  u )  -  ( F `  v )
)  <->  u  =  v
) )
10470, 103sylibd 149 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( ( N  ||  ( A  x.  ( ( F `  u )  -  ( F `  v )
) )  /\  ( N  gcd  A )  =  1 )  ->  u  =  v ) )
10566, 104mpan2d 428 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( N  ||  ( A  x.  (
( F `  u
)  -  ( F `
 v ) ) )  ->  u  =  v ) )
10661, 105sylbid 150 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( 1 ... ( phi `  N ) )  /\  v  e.  ( 1 ... ( phi `  N ) ) ) )  ->  ( (
( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  u )  =  ( ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) `
 v )  ->  u  =  v )
)
107106ralrimivva 2579 . . . . 5  |-  ( ph  ->  A. u  e.  ( 1 ... ( phi `  N ) ) A. v  e.  ( 1 ... ( phi `  N ) ) ( ( ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) ) `  u )  =  ( ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) `
 v )  ->  u  =  v )
)
108 dff13 5818 . . . . 5  |-  ( ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) -1-1-> S  <->  ( ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S  /\  A. u  e.  ( 1 ... ( phi `  N ) ) A. v  e.  ( 1 ... ( phi `  N ) ) ( ( ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) ) `  u )  =  ( ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) `
 v )  ->  u  =  v )
) )
10917, 107, 108sylanbrc 417 . . . 4  |-  ( ph  ->  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) -1-1-> S
)
110 1zzd 9370 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
11118phicld 12411 . . . . . . . 8  |-  ( ph  ->  ( phi `  N
)  e.  NN )
112111nnzd 9464 . . . . . . 7  |-  ( ph  ->  ( phi `  N
)  e.  ZZ )
113110, 112fzfigd 10540 . . . . . 6  |-  ( ph  ->  ( 1 ... ( phi `  N ) )  e.  Fin )
114 f1oeng 6825 . . . . . 6  |-  ( ( ( 1 ... ( phi `  N ) )  e.  Fin  /\  F : ( 1 ... ( phi `  N
) ) -1-1-onto-> S )  ->  (
1 ... ( phi `  N ) )  ~~  S )
115113, 1, 114syl2anc 411 . . . . 5  |-  ( ph  ->  ( 1 ... ( phi `  N ) ) 
~~  S )
1164, 5eulerthlemfi 12421 . . . . 5  |-  ( ph  ->  S  e.  Fin )
117 f1finf1o 7022 . . . . 5  |-  ( ( ( 1 ... ( phi `  N ) ) 
~~  S  /\  S  e.  Fin )  ->  (
( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) -1-1-> S  <->  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) -1-1-onto-> S ) )
118115, 116, 117syl2anc 411 . . . 4  |-  ( ph  ->  ( ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) ) : ( 1 ... ( phi `  N ) ) -1-1-> S  <->  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) -1-1-onto-> S ) )
119109, 118mpbid 147 . . 3  |-  ( ph  ->  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
120 f1oco 5530 . . 3  |-  ( ( `' F : S -1-1-onto-> ( 1 ... ( phi `  N ) )  /\  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )  ->  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
1213, 119, 120syl2anc 411 . 2  |-  ( ph  ->  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
122 eulerth.h . . 3  |-  H  =  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) )
123 f1oeq1 5495 . . 3  |-  ( H  =  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) )  ->  ( H : ( 1 ... ( phi `  N
) ) -1-1-onto-> ( 1 ... ( phi `  N ) )  <-> 
( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) ) )
124122, 123ax-mp 5 . 2  |-  ( H : ( 1 ... ( phi `  N
) ) -1-1-onto-> ( 1 ... ( phi `  N ) )  <-> 
( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
125121, 124sylibr 134 1  |-  ( ph  ->  H : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   class class class wbr 4034    |-> cmpt 4095   `'ccnv 4663    o. ccom 4668   -->wf 5255   -1-1->wf1 5256   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    ~~ cen 6806   Fincfn 6808   0cc0 7896   1c1 7897    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214   NNcn 9007   NN0cn0 9266   ZZcz 9343   QQcq 9710   ...cfz 10100  ..^cfzo 10234    mod cmo 10431    || cdvds 11969    gcd cgcd 12145   phicphi 12402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-phi 12404
This theorem is referenced by:  eulerthlemth  12425
  Copyright terms: Public domain W3C validator