![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
Ref | Expression |
---|---|
3eqtr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr3rd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtr3d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3eqtr3d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtr3d 2228 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqtr3d 2228 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: fcofo 5827 fcof1o 5832 frecabcl 6452 nnaword 6564 nninfisol 7192 enomnilem 7197 fodju0 7206 enmkvlem 7220 enwomnilem 7228 pn0sr 7831 negeu 8210 add20 8493 2halves 9211 bcnn 10828 bcpasc 10837 resqrexlemover 11154 fsumneg 11594 geolim 11654 geolim2 11655 mertensabs 11680 sincossq 11891 demoivre 11916 eirraplem 11920 gcdid 12123 gcdmultipled 12130 phiprmpw 12360 pythagtriplem12 12413 expnprm 12491 imasbas 12890 imasplusg 12891 imasmulr 12892 grpinvid1 13124 grpnpcan 13164 grplactcnv 13174 ghmgrp 13188 conjghm 13346 ringnegl 13547 ringnegr 13548 ringmneg2 13550 ring1 13555 rdivmuldivd 13640 lmodfopne 13822 lmodvsneg 13827 ioo2bl 14711 ptolemy 14959 coskpi 14983 logbgcd1irr 15099 logbgcd1irraplemap 15101 lgseisenlem3 15188 lgseisenlem4 15189 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |