Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
Ref | Expression |
---|---|
3eqtr3d.1 | |
3eqtr3d.2 | |
3eqtr3d.3 |
Ref | Expression |
---|---|
3eqtr3rd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3d.3 | . 2 | |
2 | 3eqtr3d.1 | . . 3 | |
3 | 3eqtr3d.2 | . . 3 | |
4 | 2, 3 | eqtr3d 2199 | . 2 |
5 | 1, 4 | eqtr3d 2199 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-4 1497 ax-17 1513 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-cleq 2157 |
This theorem is referenced by: fcofo 5747 fcof1o 5752 frecabcl 6359 nnaword 6471 nninfisol 7089 enomnilem 7094 fodju0 7103 enmkvlem 7117 enwomnilem 7125 pn0sr 7704 negeu 8081 add20 8364 2halves 9078 bcnn 10660 bcpasc 10669 resqrexlemover 10942 fsumneg 11382 geolim 11442 geolim2 11443 mertensabs 11468 sincossq 11679 demoivre 11703 eirraplem 11707 gcdid 11908 gcdmultipled 11915 phiprmpw 12143 pythagtriplem12 12196 expnprm 12272 ioo2bl 13110 ptolemy 13312 coskpi 13336 logbgcd1irr 13452 logbgcd1irraplemap 13454 |
Copyright terms: Public domain | W3C validator |