![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
Ref | Expression |
---|---|
3eqtr3d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr3d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr3d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr3rd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtr3d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3eqtr3d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtr3d 2212 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqtr3d 2212 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: fcofo 5787 fcof1o 5792 frecabcl 6402 nnaword 6514 nninfisol 7133 enomnilem 7138 fodju0 7147 enmkvlem 7161 enwomnilem 7169 pn0sr 7772 negeu 8150 add20 8433 2halves 9150 bcnn 10739 bcpasc 10748 resqrexlemover 11021 fsumneg 11461 geolim 11521 geolim2 11522 mertensabs 11547 sincossq 11758 demoivre 11782 eirraplem 11786 gcdid 11989 gcdmultipled 11996 phiprmpw 12224 pythagtriplem12 12277 expnprm 12353 imasbas 12733 imasplusg 12734 imasmulr 12735 grpinvid1 12929 grpnpcan 12967 grplactcnv 12977 ghmgrp 12987 ringnegl 13233 ringnegr 13234 ringmneg2 13236 ring1 13241 rdivmuldivd 13318 lmodfopne 13421 lmodvsneg 13426 ioo2bl 14128 ptolemy 14330 coskpi 14354 logbgcd1irr 14470 logbgcd1irraplemap 14472 |
Copyright terms: Public domain | W3C validator |