| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 |
|
| 3eqtr3d.2 |
|
| 3eqtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 |
. 2
| |
| 2 | 3eqtr3d.1 |
. . 3
| |
| 3 | 3eqtr3d.2 |
. . 3
| |
| 4 | 2, 3 | eqtr3d 2264 |
. 2
|
| 5 | 1, 4 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: fcofo 5907 fcof1o 5912 frecabcl 6543 nnaword 6655 nninfisol 7296 enomnilem 7301 fodju0 7310 enmkvlem 7324 enwomnilem 7332 pn0sr 7954 negeu 8333 add20 8617 2halves 9336 bcnn 10974 bcpasc 10983 wrdeqs1cat 11247 resqrexlemover 11516 fsumneg 11957 geolim 12017 geolim2 12018 mertensabs 12043 sincossq 12254 demoivre 12279 eirraplem 12283 gcdid 12502 gcdmultipled 12509 phiprmpw 12739 pythagtriplem12 12793 expnprm 12871 imasbas 13335 imasplusg 13336 imasmulr 13337 grpinvid1 13580 grpnpcan 13620 grplactcnv 13630 ghmgrp 13650 conjghm 13808 ringnegl 14009 ringnegr 14010 ringmneg2 14012 ring1 14017 rdivmuldivd 14102 lmodfopne 14284 lmodvsneg 14289 ioo2bl 15219 ptolemy 15492 coskpi 15516 logbgcd1irr 15635 logbgcd1irraplemap 15637 lgseisenlem3 15745 lgseisenlem4 15746 lgsquadlem1 15750 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |