ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3rd Unicode version

Theorem 3eqtr3rd 2206
Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.)
Hypotheses
Ref Expression
3eqtr3d.1  |-  ( ph  ->  A  =  B )
3eqtr3d.2  |-  ( ph  ->  A  =  C )
3eqtr3d.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3eqtr3rd  |-  ( ph  ->  D  =  C )

Proof of Theorem 3eqtr3rd
StepHypRef Expression
1 3eqtr3d.3 . 2  |-  ( ph  ->  B  =  D )
2 3eqtr3d.1 . . 3  |-  ( ph  ->  A  =  B )
3 3eqtr3d.2 . . 3  |-  ( ph  ->  A  =  C )
42, 3eqtr3d 2199 . 2  |-  ( ph  ->  B  =  C )
51, 4eqtr3d 2199 1  |-  ( ph  ->  D  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-gen 1436  ax-4 1497  ax-17 1513  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-cleq 2157
This theorem is referenced by:  fcofo  5747  fcof1o  5752  frecabcl  6359  nnaword  6471  nninfisol  7089  enomnilem  7094  fodju0  7103  enmkvlem  7117  enwomnilem  7125  pn0sr  7704  negeu  8081  add20  8364  2halves  9078  bcnn  10660  bcpasc  10669  resqrexlemover  10942  fsumneg  11382  geolim  11442  geolim2  11443  mertensabs  11468  sincossq  11679  demoivre  11703  eirraplem  11707  gcdid  11908  gcdmultipled  11915  phiprmpw  12143  pythagtriplem12  12196  expnprm  12272  ioo2bl  13110  ptolemy  13312  coskpi  13336  logbgcd1irr  13452  logbgcd1irraplemap  13454
  Copyright terms: Public domain W3C validator