Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
Ref | Expression |
---|---|
3eqtr3d.1 | |
3eqtr3d.2 | |
3eqtr3d.3 |
Ref | Expression |
---|---|
3eqtr3rd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3d.3 | . 2 | |
2 | 3eqtr3d.1 | . . 3 | |
3 | 3eqtr3d.2 | . . 3 | |
4 | 2, 3 | eqtr3d 2200 | . 2 |
5 | 1, 4 | eqtr3d 2200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: fcofo 5751 fcof1o 5756 frecabcl 6363 nnaword 6475 nninfisol 7093 enomnilem 7098 fodju0 7107 enmkvlem 7121 enwomnilem 7129 pn0sr 7708 negeu 8085 add20 8368 2halves 9082 bcnn 10666 bcpasc 10675 resqrexlemover 10948 fsumneg 11388 geolim 11448 geolim2 11449 mertensabs 11474 sincossq 11685 demoivre 11709 eirraplem 11713 gcdid 11915 gcdmultipled 11922 phiprmpw 12150 pythagtriplem12 12203 expnprm 12279 ioo2bl 13143 ptolemy 13345 coskpi 13369 logbgcd1irr 13485 logbgcd1irraplemap 13487 |
Copyright terms: Public domain | W3C validator |