| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 |
|
| 3eqtr3d.2 |
|
| 3eqtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 |
. 2
| |
| 2 | 3eqtr3d.1 |
. . 3
| |
| 3 | 3eqtr3d.2 |
. . 3
| |
| 4 | 2, 3 | eqtr3d 2231 |
. 2
|
| 5 | 1, 4 | eqtr3d 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: fcofo 5834 fcof1o 5839 frecabcl 6466 nnaword 6578 nninfisol 7208 enomnilem 7213 fodju0 7222 enmkvlem 7236 enwomnilem 7244 pn0sr 7857 negeu 8236 add20 8520 2halves 9239 bcnn 10868 bcpasc 10877 resqrexlemover 11194 fsumneg 11635 geolim 11695 geolim2 11696 mertensabs 11721 sincossq 11932 demoivre 11957 eirraplem 11961 gcdid 12180 gcdmultipled 12187 phiprmpw 12417 pythagtriplem12 12471 expnprm 12549 imasbas 13011 imasplusg 13012 imasmulr 13013 grpinvid1 13256 grpnpcan 13296 grplactcnv 13306 ghmgrp 13326 conjghm 13484 ringnegl 13685 ringnegr 13686 ringmneg2 13688 ring1 13693 rdivmuldivd 13778 lmodfopne 13960 lmodvsneg 13965 ioo2bl 14895 ptolemy 15168 coskpi 15192 logbgcd1irr 15311 logbgcd1irraplemap 15313 lgseisenlem3 15421 lgseisenlem4 15422 lgsquadlem1 15426 lgsquadlem2 15427 |
| Copyright terms: Public domain | W3C validator |