| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 |
|
| 3eqtr3d.2 |
|
| 3eqtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 |
. 2
| |
| 2 | 3eqtr3d.1 |
. . 3
| |
| 3 | 3eqtr3d.2 |
. . 3
| |
| 4 | 2, 3 | eqtr3d 2231 |
. 2
|
| 5 | 1, 4 | eqtr3d 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: fcofo 5834 fcof1o 5839 frecabcl 6466 nnaword 6578 nninfisol 7208 enomnilem 7213 fodju0 7222 enmkvlem 7236 enwomnilem 7244 pn0sr 7855 negeu 8234 add20 8518 2halves 9237 bcnn 10866 bcpasc 10875 resqrexlemover 11192 fsumneg 11633 geolim 11693 geolim2 11694 mertensabs 11719 sincossq 11930 demoivre 11955 eirraplem 11959 gcdid 12178 gcdmultipled 12185 phiprmpw 12415 pythagtriplem12 12469 expnprm 12547 imasbas 13009 imasplusg 13010 imasmulr 13011 grpinvid1 13254 grpnpcan 13294 grplactcnv 13304 ghmgrp 13324 conjghm 13482 ringnegl 13683 ringnegr 13684 ringmneg2 13686 ring1 13691 rdivmuldivd 13776 lmodfopne 13958 lmodvsneg 13963 ioo2bl 14871 ptolemy 15144 coskpi 15168 logbgcd1irr 15287 logbgcd1irraplemap 15289 lgseisenlem3 15397 lgseisenlem4 15398 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |