| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 |
|
| 3eqtr3d.2 |
|
| 3eqtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 |
. 2
| |
| 2 | 3eqtr3d.1 |
. . 3
| |
| 3 | 3eqtr3d.2 |
. . 3
| |
| 4 | 2, 3 | eqtr3d 2240 |
. 2
|
| 5 | 1, 4 | eqtr3d 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: fcofo 5853 fcof1o 5858 frecabcl 6485 nnaword 6597 nninfisol 7235 enomnilem 7240 fodju0 7249 enmkvlem 7263 enwomnilem 7271 pn0sr 7884 negeu 8263 add20 8547 2halves 9266 bcnn 10902 bcpasc 10911 resqrexlemover 11321 fsumneg 11762 geolim 11822 geolim2 11823 mertensabs 11848 sincossq 12059 demoivre 12084 eirraplem 12088 gcdid 12307 gcdmultipled 12314 phiprmpw 12544 pythagtriplem12 12598 expnprm 12676 imasbas 13139 imasplusg 13140 imasmulr 13141 grpinvid1 13384 grpnpcan 13424 grplactcnv 13434 ghmgrp 13454 conjghm 13612 ringnegl 13813 ringnegr 13814 ringmneg2 13816 ring1 13821 rdivmuldivd 13906 lmodfopne 14088 lmodvsneg 14093 ioo2bl 15023 ptolemy 15296 coskpi 15320 logbgcd1irr 15439 logbgcd1irraplemap 15441 lgseisenlem3 15549 lgseisenlem4 15550 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |