| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 |
|
| 3eqtr3d.2 |
|
| 3eqtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 |
. 2
| |
| 2 | 3eqtr3d.1 |
. . 3
| |
| 3 | 3eqtr3d.2 |
. . 3
| |
| 4 | 2, 3 | eqtr3d 2242 |
. 2
|
| 5 | 1, 4 | eqtr3d 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: fcofo 5876 fcof1o 5881 frecabcl 6508 nnaword 6620 nninfisol 7261 enomnilem 7266 fodju0 7275 enmkvlem 7289 enwomnilem 7297 pn0sr 7919 negeu 8298 add20 8582 2halves 9301 bcnn 10939 bcpasc 10948 wrdeqs1cat 11211 resqrexlemover 11436 fsumneg 11877 geolim 11937 geolim2 11938 mertensabs 11963 sincossq 12174 demoivre 12199 eirraplem 12203 gcdid 12422 gcdmultipled 12429 phiprmpw 12659 pythagtriplem12 12713 expnprm 12791 imasbas 13254 imasplusg 13255 imasmulr 13256 grpinvid1 13499 grpnpcan 13539 grplactcnv 13549 ghmgrp 13569 conjghm 13727 ringnegl 13928 ringnegr 13929 ringmneg2 13931 ring1 13936 rdivmuldivd 14021 lmodfopne 14203 lmodvsneg 14208 ioo2bl 15138 ptolemy 15411 coskpi 15435 logbgcd1irr 15554 logbgcd1irraplemap 15556 lgseisenlem3 15664 lgseisenlem4 15665 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |