| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3rd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr3d.1 |
|
| 3eqtr3d.2 |
|
| 3eqtr3d.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3d.3 |
. 2
| |
| 2 | 3eqtr3d.1 |
. . 3
| |
| 3 | 3eqtr3d.2 |
. . 3
| |
| 4 | 2, 3 | eqtr3d 2239 |
. 2
|
| 5 | 1, 4 | eqtr3d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: fcofo 5852 fcof1o 5857 frecabcl 6484 nnaword 6596 nninfisol 7234 enomnilem 7239 fodju0 7248 enmkvlem 7262 enwomnilem 7270 pn0sr 7883 negeu 8262 add20 8546 2halves 9265 bcnn 10900 bcpasc 10909 resqrexlemover 11292 fsumneg 11733 geolim 11793 geolim2 11794 mertensabs 11819 sincossq 12030 demoivre 12055 eirraplem 12059 gcdid 12278 gcdmultipled 12285 phiprmpw 12515 pythagtriplem12 12569 expnprm 12647 imasbas 13110 imasplusg 13111 imasmulr 13112 grpinvid1 13355 grpnpcan 13395 grplactcnv 13405 ghmgrp 13425 conjghm 13583 ringnegl 13784 ringnegr 13785 ringmneg2 13787 ring1 13792 rdivmuldivd 13877 lmodfopne 14059 lmodvsneg 14064 ioo2bl 14994 ptolemy 15267 coskpi 15291 logbgcd1irr 15410 logbgcd1irraplemap 15412 lgseisenlem3 15520 lgseisenlem4 15521 lgsquadlem1 15525 lgsquadlem2 15526 |
| Copyright terms: Public domain | W3C validator |