ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpti GIF version

Theorem fmpti 5711
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
fmpt.1 𝐹 = (𝑥𝐴𝐶)
fmpti.2 (𝑥𝐴𝐶𝐵)
Assertion
Ref Expression
fmpti 𝐹:𝐴𝐵
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmpti
StepHypRef Expression
1 fmpti.2 . . 3 (𝑥𝐴𝐶𝐵)
21rgen 2547 . 2 𝑥𝐴 𝐶𝐵
3 fmpt.1 . . 3 𝐹 = (𝑥𝐴𝐶)
43fmpt 5709 . 2 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
52, 4mpbi 145 1 𝐹:𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wral 2472  cmpt 4091  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
This theorem is referenced by:  omp1eomlem  7155  fnn0nninf  10512  cjf  10994  ref  11002  imf  11003  absf  11257  eff  11809  sinf  11850  cosf  11851  fnum  12331  fden  12332  divcnap  14744  dveflem  14905  2lgslem1b  15246  nnsf  15565  nninfself  15573
  Copyright terms: Public domain W3C validator